Gluconeogenesis

  • J.H. Exton
    Footnotes
    Affiliations
    Department of Physiology, Vanderbilt University Medical School, Nashville, Tenn., USA
    Search for articles by this author
  • Author Footnotes
    1 J. H. Exton, B. Med. Sc. (Biochemistry), M.B., Ch.B., Ph.D. (Biochemistry): Professor, Department of Physiology, Vanderbilt University, Nashville, Tenn.; and Investigator, Howard Hughes Medical Institute, Miami, Fla.
      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Gluconeogenesis is reviewed from the standpoints of its functions and relationships to general metabolism, the biochemical mechanisms involved in its control, and its alterations in various physiologic and pathologic conditions. Its functions are discussed in relationship to cerebral metabolism, the Cori cycle, the alanine cycle, and ammonia production by the kidney. The pathways of glucose synthesis from major physiologic substrates are outlined. Control mechanisms for gluconeogenesis, which appear to operate under physiologic conditions, are discussed. Particular attention is paid to regulation of the following processes or enzymes: supply of substrate from peripheral tissues, substrate uptake by the liver, transport of metabolites across the mitochondrial membranes, pyruvate carboxylase, pyruvate dehydrogenase, the Krebs cycle, P-enolpyruvate carboxykinase, pyruvate kinase, fructose-1, 6-diphosphatase, P-fructokinase, glucose 6-phosphatase, glucokinase, phosphorylase, and glycogen synthetase. In addition, the effects of changes in ATP, ADP, AMP, cyclic AMP, the [free NADH] / [free NAD+] ratio, Ca++, and H+ are considered. Changes in gluconeogenesis in various situations are described with particular reference to studies in man. An attempt is made to identify hormonal and other factors responsible for alterations in metabolism. The situations considered include the following: brief and prolonged starvation, diabetes and insulin treatment, fetal and neonatal development, pregnancy and lactation, exercise, obesity, glucocorticoid deficiency and excess, alcohol hypoglycemia, hypoxia, and fatty acid infusion. The effects of certain hypoglycemic agents on gluconeogenesis are also described. Some general conclusions are drawn regarding the possible roles and mechanisms of action of glucagon, insulin, adrenal steroids, the sympathetic nervous system, and fatty acids in the control of gluconeogenesis in vivo. Areas needing further research are outlined.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Owen O.E.
        • Morgan A.P.
        • Kemp H.G.
        • Sullivan J.M.
        • Herrera M.G.
        • Cahill Jr., G.F.
        Brain metabolism during fasting.
        J. Clin. Invest. 1967; 46: 1589
        • Hawkins R.A.
        • Williamson D.H.
        • Krebs H.A.
        Ketone body utilization by adult and suckling rat brain in vivo.
        Biochem. J. 1971; 122: 13
        • Cahill Jr., G.F.
        • Herrera M.G.
        • Morgan A.P.
        • Soeldner J.S.
        • Steinke J.
        • Levy P.L.
        • Reichard Jr., G.A.
        • Kipnis D.M.
        Hormone-fuel interrelationships during fasting.
        J. Clin. Invest. 1966; 45: 1751
        • Cahill Jr., G.F.
        Starvation in man.
        New Eng. J. Med. 1970; 282: 668
        • Owen O.E.
        • Felig P.
        • Morgan A.P.
        • Wahren J.
        • Cahill Jr., G.F.
        Liver and kidney metabolism during prolonged starvation.
        J. Clin. Invest. 1969; 48: 574
        • Goodman A.D.
        • Fuisz R.E.
        • Cahill Jr., G.F.
        Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: Its possible role in regulation of renal ammonia production.
        J. Clin. Invest. 1966; 45: 612
        • Steiner A.L.
        • Goodman A.D.
        • Treble D.H.
        Effect of metabolic acidosis on renal gluconeogenesis in vivo.
        Amer. J. Physiol. 1968; 215: 211
        • Alleyne G.A.O.
        Renal metabolic response to acid-base changes. II. The early effects of metabolic acidosis on renal metabolism in the rat.
        J. Clin. Invest. 1970; 49: 943
        • Flores H.
        • Alleyne G.A.O.
        Phosphoenolpyruvate carboxykinase of kidney. Subcellular distribution and response to acid-base changes.
        Biochem. J. 1971; 123: 35
        • Marliss E.B.
        • Aoki T.T.
        • Pozefsky T.
        • Most A.S.
        • Cahill Jr., G.F.
        Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man.
        J. Clin. Invest. 1971; 50: 814
        • Ross B.D.
        • Hems R.
        • Krebs H.A.
        The rate of gluconeogenesis from various precursors in the perfused rat liver.
        Biochem. J. 1967; 102: 942
        • Fischer M.M.
        • Kerly M.
        Amino acid metabolism in the perfused rat liver.
        J. Physiol. 1964; 174: 273
        • Felig P.
        • Owen O.E.
        • Wahren J.
        • Cahill Jr., G.F.
        Amino acid metabolism during prolonged starvation.
        J. Clin. Invest. 1969; 48: 584
        • Elwyn D.H.
        • Parikh H.E.
        • Shoemaker W.C.
        Amino acid movements between gut, liver and periphery in unanesthetized dogs.
        Amer. J. Physiol. 1968; 215: 1260
        • Mallette L.E.
        • Exton J.H.
        • Park C.R.
        Control of gluconeogenesis from amino acids in the perfused rat liver.
        J. Biol. Chem. 1969; 244: 5713
        • Felig P.
        • Pozefsky T.
        • Marliss E.
        • Cahill Jr., G.F.
        Alanine: key role in gluconeogenesis.
        Science. 1970; 167: 1003
        • Pozefsky T.
        • Felig P.
        • Tobin J.D.
        • Soeldner J.S.
        • Cahill Jr., G.F.
        Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels.
        J. Clin. Invest. 1969; 48: 2273
        • Newsholme E.A.
        • Gevers W.
        Control of glycolysis and gluconeogenesis in liver and kidney cortex.
        Vitamins Hormones (N.Y.). 1967; 25: 1
        • Scrutton M.C.
        • Utter M.F.
        The regulation of glycolysis and gluconeogenesis in animal tissues.
        Ann. Rev. Biochem. 1968; 37: 249
        • Exton J.H.
        • Mallette L.E.
        • Jefferson L.S.
        • Wong E.H.A.
        • Friedmann N.
        • Miller Jr., T.B.
        • Park C.R.
        The hormonal control of hepatic gluconeogenesis.
        Recent Progr. Hormone Res. 1970; 26: 411
        • Mallette L.E.
        • Exton J.H.
        • Park C.R.
        Effects of glucagon on amino acid transport and utilization in the perfused rat liver.
        J. Biol. Chem. 1969; 244: 5724
        • Marliss E.B.
        • Aoki T.T.
        • Unger R.H.
        • Soeldner J.S.
        • Cahill Jr., G.F.
        Glucagon levels and metabolic effects in fasting man.
        J. Clin. Invest. 1970; 49: 2256
        • Felig P.
        • Wahren J.
        Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man.
        J. Clin. Invest. 1971; 50: 1702
        • Noall M.W.
        • Riggs T.R.
        • Walker L.M.
        • Christensen H.N.
        Endocrine control of amino acid transfer.
        Science. 1957; 126: 1002
        • Williams T.F.
        • Exton J.H.
        • Park C.R.
        • Regen D.M.
        Stereospecific transport of glucose in the perfused liver.
        Amer. J. Physiol. 1968; 215: 1200
        • Klingenberg M.
        Metabolite transport in mitochondria: an example for intracellular membrane function.
        Essays Biochem. 1970; 6: 119
        • Adam P.A.J.
        • Haynes Jr., R.C.
        Control of hepatic mitochondrial CO2 fixation by glucagon, epinephrine and cortisol.
        J. Biol. Chem. 1969; 244: 6444
      1. McGiven, J. D., and Chappell, J. B.: Unpublished work referred to in Ref. 26.

        • Utter M.F.
        • Scrutton M.C.
        Pyruvate carboxylase.
        Curr. Top. Cell Regulat. 1969; 1: 253
        • McClure W.R.
        • Lardy H.A.
        Rat liver pyruvate carboxylase. IV. Factors affecting the regulation in vivo.
        J. Biol. Chem. 1971; 246: 3951
        • Reed L.J.
        Pyruvate dehydrogenase complex.
        Curr. Top. Cell Regulat. 1969; 1: 233
        • Jungas R.L.
        Effect of insulin on fatty acid synthesis from pyruvate, lactate or endogenous sources in adipose tissue: Evidence for hormonal regulation of pyruvate dehydrogenase.
        Endocrinology. 1970; 86: 1368
        • Claus T.H.
        • Regen D.M.
        • Park C.R.
        Inhibition of pyruvate oxidation with glucagon stimulation of gluconeogenesis.
        in: Fed. Proc.31. 1972: 263
        • Exton J.H.
        • Park C.R.
        The stimulation of gluconeogenesis from lactate by epinephrine, glucagon, and cylic-3′, 5′-adenylate in the perfused rat liver.
        Pharmacol. Rev. 1966; 18: 181
        • Shrago E.
        • Lardy H.A.
        • Nordlie R.C.
        • Foster D.O.
        Metabolic and hormonal control of phosphoenolpyruvate carboxykinase and malic enzyme in rat liver.
        J. Biol. Chem. 1963; 238: 3188
        • Shrago E.
        • Young J.W.
        • Lardy H.A.
        Carbohydrate supply as a regulator of rat liver phosphoenolpyruvate carboxykinase activity.
        Science. 1967; 158: 1572
        • Jefferson L.S.
        • Exton J.H.
        • Butcher R.W.
        • Sutherland E.W.
        • Park C.R.
        Role of adenosine-3′, 5′-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism.
        J. Biol. Chem. 1968; 243: 1031
        • Weber G.
        • Singhal R.L.
        • Srivastava S.K.
        Insulin: Suppressor of biosynthesis of hepatic gluconeogenic enzymes.
        in: Proc. Nat. Acad. Sci. U.S.A.53. 1965: 96
        • Freedland R.A.
        • Cunliffe T.L.
        • Zinkl J.G.
        The effect of insulin on enzyme adaptations to diets.
        J. Biol. Chem. 1966; 241: 5448
        • Phillips L.J.
        • Berry L.J.
        Circadian rhythm of mouse liver phosphoenolpyruvate carboxykinase.
        Amer. J. Physiol. 1970; 218: 1440
        • Jost J.P.
        • Rickenberg H.V.
        Cyclic AMP.
        Ann. Rev. Biochem. 1971; 40: 741
        • Ballard F.J.
        • Hanson R.W.
        Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver.
        Biochem. J. 1967; 104: 866
        • Yeung D.
        • Oliver I.T.
        Induction of phosphopyruvate carboxylase in neonatal rat liver by adenosine-3′ 5′-cyclic monophosphate.
        Biochemistry. 1968; 7: 3231
        • Greengard O.
        • Dewey H.K.
        Initiation by glucagon of the premature development of tyrosine amino transferase, serine, dehydratase, and glucose-6-phosphate in fetal rat liver.
        J. Biol. Chem. 1967; 242: 2986
        • Dawkins M.J.R.
        Biochemical aspects of developing function in newborn mammalian liver.
        Brit. Med. Bull. 1966; 22: 27
        • Tanaka T.
        • Harano U.
        • Sue F.
        • Morimura H.
        Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues.
        J. Biochem. (Tokyo). 1967; 62: 71
        • Exton J.H.
        • Park C.R.
        Control of gluconeogenesis in liver II. Effects of glucagon, catecholamines, and adenosine-3′, 5′-monophosphate on gluconeogenesis in the perfused rat liver.
        J. Biol. Chem. 1968; 243: 4189
        • Krebs H.A.
        • Eggleston L.V.
        The role of pyruvate kinase in the regulation of gluconeogenesis.
        Biochem. J. 1965; 94: 3c
        • Lea M.A.
        • Weber G.
        Role of enzymes in homeostasis. VIII. Inhibition of the activity of glycolytic enzymes by free fatty acids.
        J. Biol. Chem. 1968; 243: 1096
        • Kemp R.G.
        Rabbit liver phosphofructokinase. Comparison of some properties with those of muscle phosphofructokinase.
        J. Biol. Chem. 1971; 246: 245
        • Garland P.B.
        • Randle P.J.
        • Newsholme E.A.
        Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation.
        Nature. 1963; 200: 169
        • Start C.
        • Newsholme E.A.
        The effects of starvation and alloxan-diabetes on the contents of citrate and other metabolic intermediates in rat liver.
        Biochem. J. 1968; 107: 411
      2. Neblett, M. N., Green, W., Exton, J. H., and Park, C. R.: Effects of anoxia on carbohydrate metabolism in the perfused rat liver. Unpublished.

        • Pogell B.M.
        • Tanaka A.
        • Siddons R.C.
        Natural activators for liver fructose-1, 6-diphosphatase and the reversal of adenosine-5′-monophosphate inhibition by muscle phosphofructokinase.
        J. Biol. Chem. 1968; 243: 1356
        • Burch H.B.
        • Lowry O.H.
        • Kuhlman A.M.
        • Skerjance J.
        • Diamant E.J.
        • Lowry S.R.
        • Von Dippe P.
        Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver.
        J. Biol. Chem. 1963; 238: 2267
        • Mokrasch L.C.
        • Davidson W.D.
        • McGilvery R.W.
        The response to glucogenic stress of fructose-1, 6-diphosphatase in rabbit liver.
        J. Biol. Chem. 1956; 222: 179
        • Weber G.
        • Singhal R.L.
        Role of enzymes in homeostasis. V. Actinomycin and puromycin inhibition of cortisone-induced synthesis of hepatic glucose-6-phosphatase and fructose-1, 6-diphosphatase.
        J. Biol. Chem. 1964; 239: 521
        • Exton J.H.
        • Harper S.C.
        Role of cyclic AMP and glucocorticoids in the activation of hepatic gluconeogenesis by diabetes.
        in: Fed. Proc.31. 1972: 243
        • Exton J.H.
        • Park C.R.
        Control of gluconeogenesis in the perfused liver of normal and adrenalectomized rats.
        J. Biol. Chem. 1965; 240: PC955
        • Cahill Jr., G.F.
        • Ashmore J.
        • Renold A.E.
        • Hastings A.B.
        Blood glucose and the liver.
        Amer. J. Med. 1959; 26: 264
        • Nordlie R.C.
        Some properties and possible physiological functions of phosphotransferase activities of microsomal glucose-6-phosphatase.
        Ann. N.Y. Acad. Sci. 1969; 166: 699
        • Ashmore J.
        • Weber G.
        The role of glucose-6-phosphatase in the regulation of carbohydrate metabolism.
        Vitamins Hormones. 1959; 17: 91
        • Arion W.J.
        • Nordlie R.C.
        Biological regulation of inorganic pyrophosphate-glucose phosphotransferase and glucose-6-phosphatase. Activation by triamcinolone in vivo, in the presence of actinomycin D.
        J. Biol. Chem. 1967; 242: 2207
        • Nordlie R.C.
        • Arion W.J.
        • Hanson T.L.
        • Gilsdorf J.R.
        • Horne R.N.
        Biological regulation of liver microsomal inorganic pyrophosphate-glucose phosphotransferase, glucose-6-phosphatase, and inorganic pyrophosphatase. Differential effects of fasting on synthetic and hydrolytic activities.
        J. Biol. Chem. 1968; 243: 1140
        • Hanson T.L.
        • Lueck J.D.
        • Horne R.N.
        • Nordlie R.C.
        Adenosine-5′-triphosphate-glucose and phosphoenolpyruvate-glucose phosphotransferase activities of liver microsomal glucose-6-phosphatase.
        J. Biol. Chem. 1970; 245: 6078
        • Pilkis S.J.
        Hormonal control of hexokinase activity in animal tissues.
        Biochim. Biophys. Acta. 1970; 215: 461
        • Ureta T.
        • Radojkovic J.
        • Niemeyer H.
        Inhibition by catecholamines of the induction of rat liver glucokinase.
        J. Biol. Chem. 1970; 245: 4819
        • Jamdar S.C.
        • Greengard O.
        Premature formation of glucokinase in deevloping rat liver.
        J. Biol. Chem. 1970; 245: 2779
        • Ballard F.J.
        • Hanson R.W.
        • Kronfeld D.S.
        Gluconeogenesis and lipogenesis in tissue from ruminant and nonruminant animals.
        in: Fed. Proc.28. 1969: 218
        • Buschiazzo H.
        • Exton J.H.
        • Park C.R.
        Effects of glucose on glycogen synthetase, phosphorylase, and glycogen deposition in the perfused rat liver.
        in: Proc. Nat. Acad. Sci. U.S.A.65. 1970: 383
        • Glinsmann W.
        • Pauk G.
        • Hern E.
        Control of rat liver glycogen synthetase and phosphorylase activities by glucose.
        Biochem. Biophys. Res. Commun. 1970; 39: 774
        • Hers H.G.
        • DeWulf H.
        • Stalmans W.
        • Van den Berghe G.
        The control of glycogen synthesis in liver.
        Advances Enzym. Regulat. 1970; 8: 171
        • DeWulf H.
        The Control of Glycogen Metabolism in Liver. Vander, Louvain1971
        • Soderling T.R.
        • Hickenbottom J.P.
        • Reimann E.M.
        • Hunkeler F.
        • Walsh D.A.
        • Krebs E.G.
        Inactivation of glycogen synthetase and activation of phosphorylase kinase by muscle adenosine-3′, 5′-monophosphate-dependent protein kinases.
        J. Biol. Chem. 1970; 245: 6317
        • Bishop J.S.
        • Larner J.
        Rapid activation-inactivation of liver uridine diphosphate glucose-glycogen transferase and phosphorylase by insulin and glucagon, in vivo.
        J. Biol. Chem. 1967; 242: 1355
        • Shen L.C.
        • Villar-Palasi C.
        • Larner J.
        Hormonal alteration of protein kinase sensitivity to 3′, 5′-cyclic AMP.
        Physiol. Chem. Phys. 1970; 2: 536
        • Bishop J.S.
        Inability of insulin to activate liver glycogen transferase D phosphatase in the diabetic pancreatectomized dog.
        Biochim. Biophys. Acta. 1970; 208: 208
        • Stalmans W.
        • DeWulf H.
        • Hers H.G.
        The control of liver glycogen synthetase phosphatase by phosphorylase.
        Europ. J. Biochem. 1971; 18: 582
        • Unger R.H.
        Glucagon physiology and pathophysiology.
        New Eng. J. Med. 1971; 285: 443
        • Bishop J.S.
        • Goldberg N.D.
        • Larner J.
        Insulin regulation of hepatic glycogen metabolism in the dog.
        Amer. J. Physiol. 1971; 220: 499
      3. Exton, J. H., Lewis, S. B., Lacy, W. W., and Brineaux. J. P.: Unpublished observations.

        • Exton J.H.
        • Robison G.A.
        • Sutherland E.W.
        • Park C.R.
        Studies on the role of adenosine-3′, 5′-monophosphate in the hepatic actions of glucagon and catecholamines.
        J. Biol. Chem. 1971; 246: 6166
        • Young V.R.
        • Scrimshaw N.S.
        The physiology of starvation.
        Sci. Amer. 1971; 225: 14
        • Schimmel R.J.
        • Knobil E.
        Insulin, free fatty acids, and stimulation of hepatic gluconeogenesis during fasting.
        Amer. J. Physiol. 1970; 218: 1540
        • Exton J.H.
        • Ui M.
        • Lewis S.B.
        • Park C.R.
        Mechanism of glucagon activation of gluconeogenesis.
        in: Soling H.D. Willms B. Regulation of Gluconeogenesis. Georg. Thieme, Stuttgart1971: 160
        • Tews J.K.
        • Woodcock N.A.
        • Harper A.E.
        Stimulation of amino acid transport in rat liver slices by epinephrine, glucagon and adenosine-3′, 5′-monophosphate.
        J. Biol. Chem. 1970; 245: 3026
        • Ruderman N.
        • Toews C.J.
        • Shafrir E.
        Role of free fatty acids in glucose homeostasis.
        Arch. Intern. Med. 1969; 123: 299
        • Randle P.J.
        • Garland P.B.
        • Hales C.N.
        • Newsholme E.A.
        The glucose fatty-acid cycle. Its role in insulin insensitivity and the metabolic disturbances of diabetes mellitus.
        Lancet. 1963; 1: 785
        • Shoemaker W.C.
        • Van Itallie I.B.
        The hepatic response to glucagon in the anesthetized dog.
        Endocrinology. 1960; 66: 260
        • Long C.N.H.
        • Katzin B.
        • Fry E.G.
        The adrenal cortex and carbohydrate metabolism.
        Endocrinology. 1940; 26: 309
        • Reshef L.
        • Shapiro B.
        Effect of epinephrine, cortisone and growth hormone on release of unesterified fatty acids by adipose tissue in vitro.
        Metabolism. 1960; 9: 551
        • Friedmann N.
        • Exton J.H.
        • Park C.R.
        Interaction of adrenal steroids and glucagon on gluconeogenesis in perfused rat liver.
        Biochem. Biophys. Res. Commun. 1967; 29: 113
        • Wagle S.R.
        • Ashmore J.
        Interrelationships between amino acid metabolism and carbohydrate formation in insulin deficiency.
        J. Biol. Chem. 1961; 236: 2868
        • DeMuetter R.C.
        • Shreeve W.W.
        Conversion of DL-lactate-2-C14 or -3-C14 or pyruvate -2-C14 to blood glucose in humans: effects of diabetes, insulin, tolbutamide, and glucose load.
        J. Clin. Invest. 1963; 42: 525
        • Friedman B.
        • Goodman Jr., E.H.
        • Weinhouse S.
        Dietary and hormonal effects on gluconeogenesis in the rat.
        J. Biol. Chem. 1965; 240: 3729
        • Felig P.
        • Marliss E.
        • Ohman J.L.
        • Cahill Jr., G.F.
        Plasma amino acid levels in diabetic ketoacidosis.
        Diabetes. 1970; 19: 727
        • Scharff R.
        • Wool I.G.
        Effect of diabetes on the concentration of amino acids in plasma and heart muscle of rats.
        Biochem. J. 1966; 99: 173
        • Carlsten A.
        • Hallgren B.
        • Jagenburg R.
        • Svanborg A.
        • Werkö L.
        Amino acids and free fatty acids in plasma in diabetes II. The myocardial arterio-venous differences before and after insulin.
        Acta Med. Scand. 1966; 179: 631
        • Carlsten A.
        • Hallgren B.
        • Jagenburg R.
        • Svanborg A.
        • Werkö L.
        Arteriohepatic venous differences of free fatty acids and amino acids. Studies in patients with diabetes or essential hypercholesterolemia, and in healthy individuals.
        Acta Med. Scand. 1967; 181: 199
        • Williamson D.H.
        • Lopes-Vieira O.
        • Walker B.
        Concentrations of free glucogenic amino acids in livers of rats subjected to various metabolic stresses.
        Biochem. J. 1967; 104: 497
        • Zinneman H.H.
        • Nuttall F.Q.
        • Goetz F.C.
        Effect of endogenous insulin on human amino acid metabolism.
        Diabetes. 1966; 15: 5
        • Mortimore G.E.
        • Mondon C.E.
        Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis.
        J. Biol. Chem. 1970; 245: 2375
        • Müller W.A.
        • Faloona G.R.
        • Unger R.H.
        The effect of experimental insulin deficiency on glucagon secretion.
        J. Clin. Invest. 1971; 50: 1992
        • Park C.R.
        • Morgan H.E.
        • Henderson M.J.
        • Regen D.M.
        • Cadenas E.
        • Post R.L.
        The regulation of glucose uptake in muscle as studied in the perfused rat heart.
        Rec. Progr. Hormone Res. 1961; 17: 493
        • Jost A.
        • Picon L.
        Hormonal control of fetal development and metabolism.
        Advances Metab. Dis. 1970; 4: 123
        • Adam P.A.J.
        Control of glucose metabolism in the human fetus and newborn infant.
        Advances Metab. Dis. 1971; 5: 184
        • Cake M.H.
        • Oliver I.T.
        The activation of phosphorylase in neonatal rat liver.
        Europ. J. Biochem. 1969; 11: 576
        • Van Duyne C.M.
        • Havel R.J.
        Plasma unesterified fatty acid concentration in fetal and neonatal life.
        in: Proc. Soc. Exp. Biol. Med.102. 1959: 599
        • Chen C.H.
        • Adam P.A.J.
        • Laskowski D.E.
        • McCann M.L.
        • Schwartz R.
        The plasma free fatty acid composition and blood glucose of normal and diabetic pregnant women and of their newborn.
        Pediatrics. 1965; 36: 843
        • Ballard F.J.
        • Oliver I.T.
        Glycogen metabolism in embryonic chick and neonatal rat liver.
        Biochim. Biophys. Acta. 1963; 71: 578
        • Yeung D.
        • Oliver I.T.
        Development of gluconeogenesis in neonatal rat liver. Effect of premature delivery.
        Biochem. J. 1967; 105: 1229
        • Ballard F.J.
        The development of gluconeogenesis in rat liver. Controlling factors in the newborn.
        Biochem. J. 1971; 124: 265
        • Yeung D.
        • Oliver I.T.
        Factors affecting the premature induction of phosphopyruvate carboxylase in neonatal rat liver.
        Biochem. J. 1968; 108: 325
        • Yeung D.
        • Oliver I.T.
        Gluconeogenesis from amino acids in neonatal rat liver.
        Biochem. J. 1967; 103: 744
        • Walker D.G.
        • Holland G.
        The development of hepatic glucokinase in the neonatal rat.
        Biochem. J. 1965; 97: 845
        • Vernon R.G.
        • Walker D.G.
        Changes in activity of some enzymes involved in glucose utilization and formation in developing liver.
        Biochem. J. 1968; 106: 321
        • Joassin G.
        • Parker M.L.
        • Pildes R.S.
        • Cornblath M.
        Infants of diabetic mothers.
        Diabetics. 1967; 16: 306
        • Cornblath M.
        • Parker M.L.
        • Reisner S.H.
        • Forbes A.E.
        • Daughaday W.H.
        Secretion and metabolism of growth hormone in premature and full-term infants.
        J. Clin. Endocr. 1965; 25: 209
        • Cornblath M.
        • Ganzon A.F.
        • Nicolopoulos D.
        • Baens G.S.
        • Hollander R.J.
        • Gordon H.H.
        • Gordon M.H.
        Studies of carbohydrate metabolism in the newborn infant. III. Some factors influencing the capillary blood sugar and the response to glucagon during the first hours of life.
        Pediatrics. 1961; 27: 378
        • Migeon C.J.
        Cortisol production and metabolism in the neonate.
        J. Pediat. 1959; 55: 280
        • Philippidis H.
        • Ballard F.J.
        The development of gluconeogenesis in rat liver. Experiments in vivo.
        Biochem. J. 1969; 113: 651
        • Ballard F.J.
        The development of gluconeogenesis in rat liver. Controlling factors in the newborn.
        Biochem. J. 1971; 124: 265
        • Ballard F.J.
        Regulation of gluconeogenesis during exposure of young rats to hypoxic conditions.
        Biochem. J. 1971; 121: 169
        • Phillipidis H.
        • Ballard F.J.
        The development of gluconeogenesis in rat liver. Effects of glucagon and ether.
        Biochem. J. 1970; 120: 385
        • Cornblath M.
        • Wybregt S.H.
        • Baens G.S.
        Studies of carbohydrate metabolism in the newborn infant. VII. Tests of carbohydrate tolerance in premature infants.
        Pediatrics. 1963; 32: 1007
        • McCann M.L.
        • Chen C.H.
        • Katigbak E.B.
        • Kotchen J.M.
        • Likly B.F.
        • Schwartz R.
        Effects of fructose on hypoglucosemia in infants of diabetic mothers.
        New Eng. J. Med. 1966; 275: 1
        • Stern L.
        • Ramos A.
        • Leduc J.
        Urinary catecholamine excretion in infants of diabetic mothers.
        Pediatrics. 1968; 42: 598
        • Driscoll S.G.
        • Steinke J.
        Pancreatic insulin content in severe erythroblastosis fetalis.
        Pediatrics. 1967; 39: 448
        • From G.L.A.
        • Driscoll S.G.
        • Steinke J.
        Serum insulin in newborn infants with erythroblastosis fetalis.
        Pediatrics. 1969; 44: 549
        • Ghadimi H.
        • Pecora P.
        Free amino acids of cord plasma as compared with maternal plasma during pregnancy.
        Pediatrics. 1964; 33: 500
        • Kerr G.R.
        The free amino acids of serum during development of Macaca mulatta II. During pregnancy and fetal life.
        Pediat. Res. 1968; 2: 493
        • Poo L.J.
        • Lew W.
        • Addis T.
        Protein anabolism of organs and tissues during pregnancy and lactation.
        J. Biol. Chem. 1939; 128: 69
        • Herrera E.
        • Knopp R.H.
        • Frienkel N.
        Carbohydrate metabolism in pragnancy. VI. Plasma fuels, insulin, liver composition, gluconeogenesis, and nitrogen metabolism during late gestation in the fed and fasted rat.
        J. Clin. Invest. 1969; 48: 2260
        • Krebs H.A.
        The regulation of the release of ketone bodies by the liver.
        Advances Enzym. Regulat. 1967; 5: 339
        • Exton J.H.
        • Park C.R.
        Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats.
        J. Biol. Chem. 1967; 242: 2622
        • Johnson R.H.
        • Walton J.L.
        • Krebs H.A.
        • Williamson D.H.
        Metabolic fuels during and after exercise in athletes and non-athletes.
        Lancet. 1969; 2: 452
        • Krebs H.A.
        • Yoshida T.
        Muscular exercise and gluconeogenesis.
        Biochem. Z. 1963; 338: 241
        • Christophe J.
        • Winand J.
        • Kutzner R.
        • Hebbelinck M.
        Amino acid levels in plasma, liver, muscle, and kidney during and after exercise in fasted and fed rats.
        Amer. J. Physiol. 1971; 221: 453
        • Vranic M.
        • Wrenshall G.A.
        Exercise, insulin and glucose turnover in dogs.
        Endocrinology. 1969; 85: 165
        • Felig P.
        • Marliss E.
        • Cahill Jr., G.F.
        Plasma amino acid levels and insulin secretion in obesity.
        New Eng. J. Med. 1969; 281: 811
        • Shreeve W.W.
        • Hoshi M.
        • Oji N.
        • Shigeta Y.
        • Abe H.
        Insulin and the utilization of carbohydrates in obesity.
        Amer. J. Clin. Nutr. 1968; 21: 1404
        • Kreisberg R.A.
        • Pennington L.F.
        • Boshell B.R.
        Lactate turnover and gluconeogenesis in normal and obese humans. Effect of starvation.
        Diabetes. 1970; 19: 53
        • Wool I.G.
        • Weinshelbaum E.I.
        Incorporation of C14-amino acids into protein of isolated diaphragms: role of the adrenal steroids.
        Amer. J. Physiol. 1959; 197: 1089
        • Smith O.K.
        • Long C.N.H.
        Effect of cortisol on the plasma amino nitrogen of eviscerated adrenalectomized-diabetic rats.
        Endocrinology. 1967; 80: 561
        • Dunn A.
        • Chenoweth M.
        • Hemington J.G.
        The relationship of adrenal glucocorticoids to transaminase activity and gluconeogenesis in the intact rat.
        Biochim. Biophys. Acta. 1971; 237: 192
        • Madison L.L.
        Ethanol-induced hypoglycemia.
        Advances Metab. Dis. 1968; 3: 85
        • Lochner A.
        • Wulff J.
        • Madison L.L.
        Ethanol induced hypoglycemia. I. The acute effects of ethanol on hepatic glucose output and peripheral glucose utilization in fasted dogs.
        Metabolism. 1967; 16: 1
        • Field J.B.
        • Williams H.E.
        • Mortimore G.E.
        Studies on the mechanism of ethanol-induced hypoglycemia.
        J. Clin. Invest. 1963; 42: 497
        • Forsander O.A.
        • Raiha N.
        • Salaspuro M.
        • Maenpaa P.
        Influence of ethanol on the liver metabolism of fed and starved rats.
        Biochem. J. 1965; 94: 259
        • Frienkel N.
        • Arky R.A.
        • Singer D.L.
        • Cohen A.K.
        • Bleicher S.J.
        • Anderson J.B.
        • Silbert C.K.
        • Foster A.E.
        Alcohol hypoglycemia. IV. Current concepts of its pathogenesis.
        Diabetes. 1965; 14: 350
        • Kaden M.
        • Oakley N.W.
        • Field J.B.
        Effect of alcohol on gluconeogenesis using the isolated rat liver perfusion technique.
        Amer. J. Physiol. 1969; 216: 756
        • Krebs H.A.
        • Freedland R.A.
        • Hems R.
        • Stubbs M.
        Inhibition of hepatic gluconeogenesis by ethanol.
        Biochem. J. 1969; 112: 117
        • Wimhurst J.M.
        • Manchester K.L.
        Some aspects of the kinetics of rat liver pyruvate carboxylase.
        Biochem. J. 1970; 120: 79
        • McClure W.R.
        • Lardy H.A.
        • Wagner M.
        • Cleland W.W.
        Rat liver pyruvate carboxylase. II. Kinetic studies of the forward reaction.
        J. Biol. Chem. 1971; 246: 3579
        • Williamson J.R.
        • Scholz R.
        • Browning E.T.
        • Thurman R.G.
        • Fukami M.
        Metabolic effects of ethanol in perfused rat liver.
        J. Biol. Chem. 1969; 244: 5044
        • Madison L.L.
        • Lochner A.
        • Wulff J.
        Ethanol-induced hypoglycemia. II. Mechanism of suppression of hepatic gluconeogenesis.
        Diabetes. 1967; 16: 252
        • Brosnan J.T.
        • Krebs H.A.
        • Williamson D.H.
        Effects of ischemia on metabolite concentrations in rat liver.
        Biochem. J. 1970; 117: 91
        • Berry M.N.
        • Scheuer J.
        Splanchnic lactic acid metabolism in hyperventilation, metabolic alkalosis and shock.
        Metabolism. 1967; 16: 537
        • Exton J.H.
        • Corbin J.G.
        • Park C.R.
        Control of gluconeogenesis in liver. IV. Differential effects of fatty acids and glucagon on ketogenesis and gluconeogenesis in the perfused rat liver.
        J. Biol. Chem. 1969; 244: 4095
        • Schimmel R.J.
        • Knobil E.
        Role of free fatty acids in stimulation of gluconeogenesis during fasting.
        Amer. J. Physiol. 1969; 217: 1803
        • Seyffert Jr., W.A.
        • Madison L.L.
        Physiological effects of metabolic fuels in carbohydrate metabolism. I. Acute effect of elevation of plasma free fatty acids on hepatic glucose output, peripheral glucose utilization, serum insulin, and plasma glucagon levels.
        Diabetes. 1967; 16: 765
        • Sanbar S.S.
        • Hetenyi G.
        • Forbath N.
        • Evans J.R.
        Effects of infusion of octanoate on glucose concentration in plasma and the rates of glucose production and utilization in dogs.
        Metabolism. 1965; 14: 1311
        • Sanbar S.S.
        • Evans J.R.
        • Lin B.
        • Hetenyi Jr., G.
        Further studies on the effect of octanoate on glucose metabolism in dogs.
        Can. J. Physiol. Pharmacol. 1967; 45: 29
        • Friedmann B.
        • Goodman Jr., E.H.
        • Weinhouse S.
        Effects of insulin and fatty acids on gluconeogenesis in the rat.
        J. Biol. Chem. 1967; 242: 3620
        • Meghal S.K.
        • Burns L.C.
        • Koeppe R.E.
        Effect of fatty acids on gluconeogenesis in the rat.
        Biochim. Biophys. Acta. 1970; 222: 231
        • Exton J.H.
        • Lewis S.B.
        • Park C.R.
        Examination of in vitro effects of nicotinic acid on basal and hormone-stimulated glycogenolysis, gluconeogenesis, ureogenesis and ketogenesis in the isolated perfused rat liver.
        in: Gey K.F. Carlson L.A. Metabolic Effects of Nicotinic Acid and Its Derivatives. Hans Huber, Bern1971: 851
        • Tyberghein J.M.
        • Williams R.H.
        Metabolic effects of phenylethylbiguanide, a new hypoglycemic compound.
        in: Proc. Soc. Exp. Biol. Med.96. 1957: 29
        • Meyer F.
        • Ipaktchi M.
        • Clauser H.
        Specific inhibition of gluconeogenesis by biguanides.
        Nature. 1967; 213: 203
        • Altschuld R.A.
        • Kruger F.A.
        Inhibition of hepatic gluconeogenesis in guinea pig by phenformin.
        Ann. N.Y. Acad. Sci. 1968; 148: 612
        • Steiner D.F.
        • Williams R.H.
        Respiratory inhibition and hypoglycemia by biguanides and decamethylene-biguanide.
        Biochim. Biophys. Acta. 1958; 30: 329
        • Searle G.L.
        • Gulli R.
        • Cavalieri R.R.
        Effect of phenformin in nondiabetic humans. Estimation of glucose turnover rate and Cori cycle activity.
        Metabolism. 1969; 18: 148
        • Craig J.W.
        • Miller M.
        • Woodward H.
        • Merik E.
        Influence of phenethyl biguanide on lactic, pyruvic and citric acids in diabetic patients.
        Diabetes. 1960; 9: 186
        • Searle G.L.
        • Cavalieri R.R.
        Glucose kinetics before and after phenformin in the human subject.
        Ann. N.Y. Acad. Sci. 1968; 148: 734
        • Von Holt C.
        • Von Holt M.
        • Böhm H.
        Metabolic effects of hypoglycin and methylenecyclopropane acetic acid.
        Biochim. Biophys. Acta. 1966; 125: 11
        • Corredor C.F.
        • Brendel K.
        • Bressler R.
        Studies on the mechanism of the hypoglycemic action of 4-pentenoic acid.
        in: Proc. Nat. Acad. Sci. U.S.A.58. 1967: 2299
        • Toews C.J.
        • Lowy C.
        • Ruderman N.B.
        The regulation of gluconeogenesis. The effect of pent-4-enoic acid on gluconeogenesis and on gluconeogenic metabolite concentrations of isolated perfused rat liver.
        J. Biol. Chem. 1970; 245: 818
        • Williamson J.R.
        • Rostand S.G.
        • Peterson M.J.
        Control factors affecting gluconeogenesis in perfused rat liver. Effects of 4-pentenoic acid.
        J. Biol. Chem. 1970; 245: 3242
        • Menahan L.A.
        • Wieland O.
        The role of endogenous lipid in gluconeogenesis and ketogenesis of perfused rat liver.
        Europ. J. Biochem. 1969; 9: 182
        • Foster D.O.
        • Ray P.D.
        • Lardy H.A.
        A paradoxical in vivo effect of L-tryptophan on the phosphoenolpyruvate carboxykinase of rat liver.
        Biochemistry (Wash.). 1966; 5: 563
        • Veneziale C.M.
        • Walter P.
        • Kneer N.
        • Lardy H.A.
        Influence of L-tryptophan and its metabolites on gluconeogenesis in the isolated perfused liver.
        Biochemistry (Wash.). 1967; 6: 2129
        • Hanson R.L.
        • Ray P.D.
        • Walter P.
        • Lardy H.A.
        Mode of action of hypoglycemic agents. I. Inhibition of gluconeogenesis by quinaldic acid and 5-methoxyindole-2-carboxylic acid.
        J. Biol. Chem. 1969; 244: 4351
        • Bauman N.
        • Hill C.J.
        Inhibition of gluconeogenesis and α-keto oxidation by 5-methoxyindole-2-carboxylic acid.
        Biochemistry (Wash.). 1968; 7: 1322
        • Ray P.D.
        • Hanson R.L.
        • Lardy H.A.
        Inhibition by hydrazine of gluconeogenesis in the rat.
        J. Biol. Chem. 1970; 245: 690