Advertisement

An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress

  • D. Bonnefont-Rousselot
    Affiliations
    Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, Paris, France; Laboratoire de Chimie-Physique, UMR 8601, Paris, France; and the Laboratoire de Biochimie, Biologie Moléculaire et Nutrition (EA 2416), Faculté de Pharmacie, Clermont-Ferrand, France
    Search for articles by this author
  • B. Raji
    Affiliations
    Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, Paris, France; Laboratoire de Chimie-Physique, UMR 8601, Paris, France; and the Laboratoire de Biochimie, Biologie Moléculaire et Nutrition (EA 2416), Faculté de Pharmacie, Clermont-Ferrand, France
    Search for articles by this author
  • S. Walrand
    Affiliations
    Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, Paris, France; Laboratoire de Chimie-Physique, UMR 8601, Paris, France; and the Laboratoire de Biochimie, Biologie Moléculaire et Nutrition (EA 2416), Faculté de Pharmacie, Clermont-Ferrand, France
    Search for articles by this author
  • M. Gardès-Albert
    Affiliations
    Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, Paris, France; Laboratoire de Chimie-Physique, UMR 8601, Paris, France; and the Laboratoire de Biochimie, Biologie Moléculaire et Nutrition (EA 2416), Faculté de Pharmacie, Clermont-Ferrand, France
    Search for articles by this author
  • D. Jore
    Affiliations
    Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, Paris, France; Laboratoire de Chimie-Physique, UMR 8601, Paris, France; and the Laboratoire de Biochimie, Biologie Moléculaire et Nutrition (EA 2416), Faculté de Pharmacie, Clermont-Ferrand, France
    Search for articles by this author
  • A. Legrand
    Affiliations
    Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, Paris, France; Laboratoire de Chimie-Physique, UMR 8601, Paris, France; and the Laboratoire de Biochimie, Biologie Moléculaire et Nutrition (EA 2416), Faculté de Pharmacie, Clermont-Ferrand, France
    Search for articles by this author
  • J. Peynet
    Affiliations
    Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, Paris, France; Laboratoire de Chimie-Physique, UMR 8601, Paris, France; and the Laboratoire de Biochimie, Biologie Moléculaire et Nutrition (EA 2416), Faculté de Pharmacie, Clermont-Ferrand, France
    Search for articles by this author
  • M.P. Vasson
    Affiliations
    Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, Paris, France; Laboratoire de Chimie-Physique, UMR 8601, Paris, France; and the Laboratoire de Biochimie, Biologie Moléculaire et Nutrition (EA 2416), Faculté de Pharmacie, Clermont-Ferrand, France
    Search for articles by this author

      Abstract

      Metformin (dimethylbiguanide) is an antihyperglycemic agent used in type 2 diabetes. Beyond its action on glycemic control, metformin exhibits other intrinsic effects that could play a role in prevention against diabetes complications. Some studies thus reported an improvement in the antioxidant status in patients treated with metformin. This might be in part related to its property to limit formation of advanced glycation end products (AGEs) and to decrease the overproduction of free radicals in diabetic subjects. The aim of this study was to investigate the in vitro ability of metformin to modulate the action of reactive oxygen species (ROS) generated either by water gamma radiolysis or by stimulated human leukocytes. Our results showed that metformin at pharmacologically relevant concentrations was in vitro able to scavenge hydroxyl (·OH) but not superoxide (O·−2) free radicals and that hydrogen peroxide did not react with metformin. Nevertheless, when polymorphonuclear cells (PMN) are stimulated by phorbol myristate acetate (PMA), or above all by formyl methionine leucyl phenylalanine (fMLP), a systematic (although nonsignificant) decrease of the ROS-induced chimiluminescence (CL) was observed. These results suggest that metformin could directly scavenge ROS or indirectly act by modulating the intracellular production of superoxide anion, of which NADPH oxidase constitutes the major source. This could contribute to the additional benefits of metformin, especially those related to the improvement in the cardiovascular outcomes in diabetes. © 2003 Elsevier Inc. All rights reserved.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wiernsperger NF
        • Bailey CJ
        The antihyperglycaemic effect of metformin. Therapeutic and cellular mechanisms.
        Drugs. 1999; 58: 31-39
        • Prospective Diabetes Study UKPDS Group UK
        Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes.
        Lancet. 1998; 352: 854-865
        • Tanaka Y
        • Iwamoto H
        • Onuma T
        • et al.
        Inhibitory effect of metformin on formation of advanced glycation end products.
        Curr Ther Res. 1997; 58: 693-697
        • Beisswenger P
        • Howell S
        • Touchette A
        • et al.
        Metformin reduces systemic methylglyoxal levels in type 2 diabetes.
        Diabetes. 1999; 48: 198-202
        • Ruggiero-Lopez D
        • Lecomte M
        • Moinet G
        • et al.
        Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end products formation.
        Biochem Pharmacol. 1999; 58: 1765-1773
        • Youssef S
        • Nguyen DT
        • Soulis T
        • et al.
        Effect of diabetes and aminoguanidine therapy on renal advanced glycation end-product binding.
        Kidney Int. 1999; 55: 907-916
        • Giardino I
        • Edelstein D
        • Brownlee M
        BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells.
        J Clin Invest. 1996; 97: 1422-1428
        • Yan SD
        • Schmidt AM
        • Anderson GM
        • et al.
        Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins.
        J Biol Chem. 1994; 269: 9889-9897
        • Nishikawa T
        • Edelstein D
        • Du XL
        • et al.
        Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.
        Nature. 2000; 404: 787-790
        • Berliner JA
        • Heinecke JW
        The role of oxidized lipoproteins in atherogenesis.
        Free Radic Biol Med. 1999; 20: 707-727
        • Ceriello A
        Oxidative stress and glycemic regulation.
        Metabolism. 2000; 49: 27-29
        • Faure P
        • Rossini E
        • Wiernsperger N
        • et al.
        An insulin sensitizer improves the free radical defense system potential and insulin sensitivity in high fructose-fed rats.
        Diabetes. 1999; 48: 353-357
        • Ewis SA
        • Abdel-Rahman MS
        Effect of metformin on glutathione and magnesium in normal and stretozotocin-induced diabetic rats.
        J Appl Toxicol. 1995; 15: 387-390
        • Tessier D
        • Maheux P
        • Khalil A
        • et al.
        Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes.
        Metabolism. 1999; 48: 897-903
        • Pavlovic D
        • Kocic R
        • Kocic G
        • et al.
        Effect of four-week metformin treatment on plasma and erythrocyte antioxidative defense enzymes in newly diagnosed obese patients with type 2 diabetes.
        Diabetes Obes Metab. 2000; 2: 251-256
        • Cosic V
        • Antic S
        • Pesic M
        • et al.
        Monotherapy with metformin: Does it improve hypoxia in type 2 diabetic patients?.
        Clin Chem Lab Med. 2001; 39: 818-821
        • Giardino I
        • Fard AK
        • Hatchell DL
        • et al.
        Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis.
        Diabetes. 1998; 47: 1114-1120
        • Yildiz G
        • Demiryürek T
        • Sahin-Erdemli I
        • et al.
        Comparison of antioxidant activities of aminoguanidine, methylguanidine and guanidine by luminol-enhanced chemiluminescence.
        Br J Pharmacol. 1998; 124: 905-910
        • Spinks JWT
        • Woods RJ
        Water and inorganic aqueous systems.
        in: ed 3. Introduction to Radiation Chemistry. Wiley, New York, NY1990: 243-313
        • Yuen KH
        • Peh KK
        Simple high-performance liquid chromatography method for the determination of metformin in human plasma.
        J Chromatogr B. 1998; 710: 243-246
        • Caldefie-Chezet F
        • Poulin A
        • Tridon A
        • et al.
        Leptin: A potential regulator of polymorphonuclear neutrophil bactericidal action.
        J Leukoc Biol. 2001; 69: 414-418
        • Lisfi D
        • Jore D
        • Bonnefont-Rousselot D
        • et al.
        Rôle anti-oxydant de l'aminoguanidine soumise à l'action des radicaux libres ·OH et O·−2 produits par radiolyse continue de l'eau.
        J Chim Phys. 1997; 97: 283-288
        • Lisfi D
        • Bonnefont-Rousselot D
        • Fernet M
        • et al.
        Endogenous vitamin E and β-carotene protection by aminoguanidine upon oxidation of human low density lipoproteins (LDLs) by ·OH/O·−2 free radicals.
        Radiat Res. 2000; 153: 497-507
        • Pabst MJ
        Priming of neutrophils.
        in: The Handbook of Immunopharmacology: Immunopharmacology of Neutrophils. Academic, San Diego, CA1994: 195-222
        • Dewas C
        • Fay M
        • Gougerot-Pocidalo M-A
        • et al.
        The mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47phox phosphorylation in human neutrophils.
        J Immunol. 2000; 165: 5238-5244
        • Casimir CM
        • Teahan CG
        The respiratory burst of neutrophils and its deficiency.
        in: The Handbook of Immunopharmacology: Immunopharmacology of Neutrophils. Academic, San Diego, CA1994: 27-54
        • Karlsson A
        • Nixon JB
        • McPhail LC
        Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal tranduction pathways: Dependent or independent of phosphatidylinositol 3-kinase.
        J Leukoc Biol. 2000; 67: 396-404
        • Hasan K
        • Heesen BJ
        • Corbett JA
        • et al.
        Inhibition of nitric oxide formation by guanidines.
        Eur J Pharmacol. 1993; 249: 101-106
        • Wiernsperger NF
        Metformin: Intrinsic vasculoprotective properties.
        Diabetes Technol Ther. 2000; 2: 259-272
        • Detaille D
        • Wiernsperger N
        • Devos P
        Cellular and molecular mechanisms involved in insulin's potentiation of glycogen synthase activity by metformin.
        Biochem Pharmacol. 1999; 58: 1475-1486
        • Detaille D
        • Gingas B
        • Leverve X
        • et al.
        Obligatory role of membrane events in the regulatory effect of metformin on the respiration chain function.
        Biochem Pharmacol. 2002; 63: 1259-1272
        • Griendling KK
        • Sorescu D
        • Ushio-Fukai M
        NAD(P)H oxidase: role in cardiovascular biology and disease.
        Circ Res. 2000; 86: 494-501