Research Article| Volume 54, ISSUE 11, P1536-1541, November 2005

Puerariae radix prevents bone loss in castrated male mice


      Puerariae radix (PR) is one of the earliest and most important crude herbs used in Chinese medicine for various medicinal purposes. PR contains a high amount of isoflavonoids, such as daidzein and genistein, which are known to prevent bone loss induced by estrogen deficiency. We have demonstrated that PR not only completely prevents bone loss but also significantly increases the bone mass at high doses in ovariectomized mice without exhibiting estrogenic action in the uterus. In this study, we examined whether PR exhibits effects on bone loss in androgen-deficient male mice similar to estrogen-deficient female mice. Male mice were orchidectomized (ORX) and fed a diet containing low, middle, and high doses (5%, 10%, and 20% of diet, respectively) of PR or normal diet with subcutaneous administration of 17β-estradiol (E2, 0.03 μg/d; Sigma, St Louis, Mo), for 4 weeks. In ORX mice, the seminal vesicle weight decreased markedly, and it was not affected by the administration of any doses of PR and E2. The bone mineral density (BMD) of the whole femur was significantly decreased by ORX, and the decrease in BMD was completely prevented by intake of the diet with the low dose of PR. Intake of the diet with the middle dose of PR further normalized BMD in ORX mice. Furthermore, the high dose of PR administration (PR20) significantly increased BMD in ORX mice, and the potency was similar to that of E2. Morphometric analysis of the femoral metaphysis showed that intake of the diet with the low dose of PR completely prevented the decrease in bone volume/tissue volume and trabecular number and restored the increase in trabecular separation in ORX mice. In addition, intake of the diet with the high dose of PR further increased bone volume/tissue volume and trabecular number and decreased trabecular separation in ORX mice. These results propose the possibility that estrogenic Chinese herbs such as PR can be one of the candidates for the treatment or prevention of osteoporosis in elderly men with hypogonadism.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Adlercreutz H.
        • Hamalainen E.
        • Gorbach S.
        • Goldin B.
        Dietary phyto-oestrogens and the menopause in Japan.
        Lancet. 1992; 339: 1233
        • Nguyan T.V.
        • Eisman J.A.
        • Kelly P.J.
        • Sambrook P.N.
        Risk factors for osteoporotic fractures in elderly men.
        Am J Epidemiol. 1996; 144: 255-263
        • Orwoll E.S.
        • Klein R.F.
        Osteoporosis in men.
        Endocr Rev. 1995; 16: 87-116
        • Khosla S.
        • Melton III, L.J.
        • Atkinson E.J.
        • O'Fallon W.M.
        • Klee G.G.
        • Riggs B.L.
        Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen.
        J Clin Endocrinol Metab. 1998; 83: 2266-2274
        • Slemenda C.W.
        • Longcope C.
        • Zhou L.
        • Hui S.L.
        • Peacock M.
        • Johnston C.C.
        Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens.
        J Clin Invest. 1997; 100: 1755-1759
        • Falahati-Nini A.
        • Riggs B.L.
        • Atkinson E.J.
        • O'Fallon W.M.
        • Eastell R.
        • Khosla S.
        Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men.
        J Clin Invest. 2000; 106: 1553-1560
        • Brandi M.L.
        Natural and synthetic isoflavones in the prevention and treatment of chronic diseases.
        Calcif Tissue Int. 1997; 61: S5-S8
        • Barnes S.
        Evolution of the health benefits of soy isoflavones.
        Proc Soc Exp Biol Med. 1998; 217: 386-392
        • Wiseman H.
        The therapeutic potential of phytoestrogens.
        Expert Opin Investig Drugs. 2000; 9: 1829-1840
        • Adlercreutz H.
        • Markkanen H.
        • Watanabe S.
        Plasma concentrations of phyto-oestrogens in Japanese men.
        Lancet. 1993; 342: 1209-1210
        • Messina M.
        • Persky V.
        • Setchell K.D.R.
        • Barnes S.
        Soy intake and cancer risk: a review of in vitro and in vivo data.
        Nutr Cancer. 1994; 21: 113-131
        • Wei H.
        • Bowen R.
        • Cai Q.
        • Barnes S.
        • Wang Y.
        Antioxidant and antipromotional effects of the soybean isoflavone genistein.
        Proc Soc Exp Biol Med. 1995; 208: 124-130
        • Arjmandi B.H.
        • Getlinger M.J.
        • Goyal N.V.
        • Hasler C.M.
        • Juma S.
        • Drum M.L.
        • et al.
        Role of soy protein with normal or reduced isoflavone content in reversing bone loss induced by ovarian deficiency in rats.
        Am J Clin Nutr. 1998; 68: S1858-S1863
        • Draper C.R.
        • Edel M.J.
        • Dick I.M.
        • Randall A.G.
        • Martin G.B.
        • Prince R.L.
        Phytoestrogens reduce bone loss and bone resorption in oophorectomized rats.
        J Nutr. 1997; 127: 1795-1799
        • Potter S.M.
        • Baum J.A.
        • Teng H.
        • Stillman R.J.
        • Shay N.F.
        • Erdman J.W.
        Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women.
        Am J Clin Nutr. 1998; 68: S1375-S1379
        • Ishimi Y.
        • Miyaura C.
        • Ohmura M.
        • Onoe Y.
        • Sato T.
        • Uchiyama Y.
        • et al.
        Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency.
        Endocrinology. 1999; 140: 1893-1900
        • Ishimi Y.
        • Arai N.
        • Wang X.
        • Wu J.
        • Umegaki K.
        • Miyaura C.
        • et al.
        Difference in effective dosage of genistein on bone and uterus in ovariectomized mice.
        Biochem Biophys Res Commun. 2000; 274: 697-701
        • Wu J.
        • Wang X.
        • Takasaki M.
        • Ohta A.
        • Higuchi M.
        • Ishimi Y.
        Cooperative effects of exercise training and genistein administration on bone mass in ovariectomized mice.
        J Bone Miner Res. 2001; 16: 1829-1836
        • Ishimi Y.
        • Yoshida M.
        • Wakimoto S.
        • Wu J.
        • Chiba H.
        • Wang X.
        • et al.
        Genistein, a soybean isoflavone, affects bone marrow lymphopoiesis and prevents bone loss in castrated male mice.
        Bone. 2002; 31: 180-185
        • Wu J.
        • Wang X.
        • Chiba H.
        • Higuchi M.
        • Takasaki M.
        • Ohta A.
        • et al.
        Combined intervention of exercise and genistein prevented androgen deficiency–induced bone loss in mice.
        J Appl Physiol. 2003; 94: 335-342
        • Wu J.
        • Wang X.
        • Higuchi M.
        • Yamada K.
        • Ishimi Y.
        High bone mass gained by exercise in growing male mice is increased by subsequent reduced exercise.
        J Appl Physiol. 2004; 97: 806-810
        • Wu J.
        • Wang X.
        • Chiba H.
        • Higuchi M.
        • Nakatani T.
        • Ezaki O.
        • et al.
        Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice.
        Metabolism. 2004; 53: 942-948
        • Fan L.L.
        • O'Keefe D.D.
        • Powell W.WJ.
        Pharmacologic studies on radix puerariae: effect of puerarin on regional myocardial blood flow and cardiac hemodynamics in dogs with acute myocardial ischemia.
        Chin Med J. 1985; 98: 821-832
        • Wang X.
        • Wu J.
        • Chiba H.
        • Umegaki K.
        • Yamada K.
        • Ishimi Y.
        Puerariae radix prevents bone loss in ovariectomized mice.
        J Bone Miner Metab. 2003; 21: 268-275
        • Gaumet-Meunier N.
        • Coxam V.
        • Robins S.
        • Pastoureau P.
        • Pointillart A.
        • Davicco M.J.
        • et al.
        Gonadal steroids and bone metabolism in young castrated male rats.
        Calcif Tissue Int. 2000; 66: 470-475
        • Onoe Y.
        • Miyaura C.
        • Ito M.
        • Ohta H.
        • Nozawa S.
        • Suda T.
        Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice.
        J Bone Miner Res. 2000; 15: 541-549
        • Erben R.G.
        • Eberle J.
        • Stahr K.
        • Goldberg M.
        Androgen deficiency induces high turnover osteopenia in aged male rats: a sequential histomorphometric study.
        J Bone Miner Res. 2000; 15: 1085-1098
        • Miyaura C.
        • Toda K.
        • Inada M.
        • Ohshiba T.
        • Matusmoto C.
        • Okada T.
        • et al.
        Sex- and age-related response to aromatase deficiency in bone.
        Biochem Biophys Res Commun. 2001; 280: 1062-1068
        • Smith E.P.
        • Body J.
        • Frank G.R.
        • Takahashi H.
        • Cohen R.M.
        • Specker B.
        • et al.
        Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man.
        N Engl J Med. 1994; 331: 1056-1061
        • Carani C.
        • Qin K.
        • Simoni M.
        • Faustini-fustini M.
        • Serpente S.
        • Body J.
        • et al.
        Effect of testosterone and estradiol in a man with aromatase deficiency.
        N Engl J Med. 1997; 337: 91-95
        • Morishima A.
        • Grumbach M.M.
        • Simpson E.R.
        • Fisher C.
        • Qin K.
        Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens.
        J Clin Endocrinol Metab. 1995; 80: 3689-3698
        • Toda T.
        • Uesugi T.
        • Hirai K.
        • Nukaya H.
        • Tsuji K.
        • Ishida H.
        New 6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-Succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet.
        Biol Pharm Bull. 1999; 22: 1193-1201
        • Ohta A.
        • Uehara M.
        • Sakai K.
        • Takasaki M.
        • Adlercreutz H.
        • Morohashi T.
        • et al.
        A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice.
        J Nutr. 2002; 132: 2048-2054
        • Kuiper G.G.
        • Lemmen J.G.
        • Carlsson B.
        • Corton J.C.
        • Safe S.H.
        • van der Saag P.T.
        • et al.
        Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.
        Endocrinology. 1998; 139: 4252-4263