Bioactives of Artemisia dracunculus L enhance cellular insulin signaling in primary human skeletal muscle culture


      An alcoholic extract of Artemisia dracunculus L (PMI 5011) has been shown to decrease glucose and improve insulin levels in animal models, suggesting an ability to enhance insulin sensitivity. We sought to assess the cellular mechanism by which this botanical affects carbohydrate metabolism in primary human skeletal muscle culture. We measured basal and insulin-stimulated glucose uptake, glycogen accumulation, phosphoinositide 3 (PI-3) kinase activity, and Akt phosphorylation in primary skeletal muscle culture from subjects with type 2 diabetes mellitus incubated with or without various concentrations of PMI 5011. We also analyzed the abundance of insulin receptor signaling proteins, for example, IRS-1, IRS-2, and PI-3 kinase. Glucose uptake was significantly increased in the presence of increasing concentrations of PMI 5011. In addition, glycogen accumulation, observed to be decreased with increasing free fatty acid levels, was partially restored with PMI 5011. PMI 5011 treatment did not appear to significantly affect protein abundance for IRS-1, IRS-2, PI-3 kinase, Akt, insulin receptor, or Glut-4. However, PMI 5011 significantly decreased levels of a specific protein tyrosine phosphatase, that is, PTP1B. Time course studies confirmed that protein abundance of PTP1B decreases in the presence of PMI 5011. The cellular mechanism of action to explain the effects by which an alcoholic extract of A dracunculus L improves carbohydrate metabolism on a clinical level may be secondary to enhancing insulin receptor signaling and modulating levels of a specific protein tyrosine phosphatase, that is, PTP1B.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • DeFronzo R.A.
        Insulin resistance, hyperinsulinemia, and coronary artery disease: a complex metabolic web.
        J Cardiovasc Pharmacol. 1992; 20: S1-S16
        • Reaven G.M.
        Banting lecture 1988. Role of insulin resistance in human disease.
        Diabetes. 1988; 37: 1595-1607
        • Haffner S.M.
        The insulin resistance syndrome revisited.
        Diabetes Care. 1996; 19: 275-277
        • American Diabetes Association
        Nutrition recommendations and interventions for diabetes.
        Diabetes Care. 2007; 30: S48-S65
        • Nissen S.E.
        • Wolski K.
        Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.
        N Engl J Med. 2007; 356: 2457-2471
        • Gibson J.E.
        • Taylor D.A.
        Can claims, misleading information and manufacturing issues regulating dietary supplements be improved in the United States of America?.
        J Pharmacol Exp Ther. 2005; 314: 939-944
        • Neuhouser M.L.
        Dietary supplement use by American women: challenges in assessing patterns of use, motives and costs.
        J Nutr. 2003; 133: 1992S-1996S
        • Witters L.A.
        The blooming of the French lilac.
        J Clin Invest. 2001; 108: 1105-1107
        • Swanston-Flatt S.K.
        • Flatt P.R.
        • Day C.
        • Bailey C.J.
        Traditional dietary adjuncts for the treatment of diabetes mellitus.
        Proc Nutr Soc. 1991; 50: 641-651
        • Ribnicky D.M.
        • Poulev A.
        • Watford M.
        • Cefalu W.T.
        • Raskin I.
        Antihyperglycemic activity of TARRALIN, an ethanolic extract of Artemisia dracunculus L.
        Phytomedicine. 2006; 13: 550-557
        • Henry R.R.
        • Ciaraldi T.P.
        • Mudaliar S.
        • Abrams L.
        • Nikoulina S.E.
        Acquired defects of glycogen synthase activity in cultured human skeletal muscle cells: influence of high glucose and insulin levels.
        Diabetes. 1995; 45: 400-407
        • Gomez-Lechon M.J.
        • Ponsoda X.
        • Cadtell J.V.
        A microassay for measuring glycogen in 96-well cultured cells.
        Analytical Biochemistry. 1996; 236: 296-301
        • Cefalu W.T.
        • Wang Z.Q.
        • Zhang X.H.
        • Baldor L.C.
        • Russell J.C.
        Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats.
        J Nutr. 2002; 132: 1107-1114
        • Wang Z.Q.
        • Bell-Farrow A.D.
        • Sonntag W.
        • Cefalu W.T.
        Effect of age and caloric restriction on insulin receptor binding and glucose transporter levels in aging rats.
        Exp Gerontol. 1997; 32: 671-684
        • Goodyear L.J.
        • Giorgino F.
        • Sherman L.A.
        • Carey J.
        • Smith R.J.
        • Dohm G.L.
        Insulin receptor phosphorylation, insulin receptor substrate–1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects.
        J Clin Invest. 1995; 95: 2195-2204
        • Wang Z.Q.
        • Zhang X.H.
        • Russell J.C.
        • Hulver M.
        • Cefalu W.T.
        Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.
        J Nutr. 2006; 136: 415-420
        • Macaulay K.
        • Blair A.S.
        • Hajduch E.
        • Terashima T.
        • Baba O.
        • Sutherland C.
        • et al.
        Constitutive activation of GSK3 down regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells.
        J Biol Chem. 2005; 280: 9509-9518
        • Cha B.S.
        • Ciaraldi T.P.
        • Park K.S.
        • Carter L.
        • Mudaliar S.R.
        • Henry R.R.
        Impaired fatty acid metabolism in type 2 diabetic skeletal muscle cells is reversed by PPARgamma agonists.
        Am J Physiol Endocrinol Metab. 2005; 289: E151-E159
        • Ciaraldi T.P.
        • Abrams L.
        • Nikoulina S.
        • Mudaliar S.
        • Henry R.R.
        Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non–insulin-dependent diabetes mellitus subjects.
        J Clin Invest. 1995; 96: 2820-2827
        • Henry R.R.
        • Abrams L.
        • Nikoulina S.
        • Ciaraldi T.P.
        Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures.
        Diabetes. 1995; 44: 936-946
        • Ukropcova B.
        • McNeil M.
        • Sereda O.
        • de Jonge L.
        • Xie H.
        • Bray G.A.
        • et al.
        Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor.
        J Clin Invest. 2005; 115: 1934-1941
        • Hanson R.W.
        • Reshef L.
        Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression.
        Annu Rev Biochem. 1997; 66: 581-611
        • Dube N.
        • Tremblay M.L.
        Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer.
        Biochim Biophys Acta. 2005; 1754: 108-117
        • Goldstein B.J.
        Protein-tyrosine phosphatase 1B (PTP1B): a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance.
        Curr Drug Targets Immune Endocr Metabol Disord. 2001; 1: 265-275
        • Tonks N.K.
        • Neel B.G.
        Combinatorial control of the specificity of protein tyrosine phosphatases.
        Curr Opin Cell Biol. 2001; 13: 182-195
        • Zhang Z.Y.
        Protein tyrosine phosphatases: prospects for therapeutics.
        Curr Opin Chem Biol. 2001; 5: 416-423
        • Ahmad F.
        • Azevedo J.L.
        • Cortright R.
        • Dohm G.L.
        • Goldstein B.J.
        Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes.
        J Clin Invest. 1997; 100: 449-458
        • Goldstein B.J.
        Protein-tyrosine phosphatases: emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance.
        J Clin Endocrinol Metab. 2002; 87: 2474-2480
        • Santaniemi M.
        • Ukkola O.
        • Kesaniemi Y.A.
        Tyrosine phosphatase 1B and leptin receptor genes and their interaction in type 2 diabetes.
        J Intern Med. 2004; 256: 48-55
        • Seely B.L.
        • Staubs P.A.
        • Reichart D.R.
        • Berhanu P.
        • Milarski K.L.
        • Saltiel A.R.
        • et al.
        Protein tyrosine phosphatase 1B interacts with the activated insulin receptor.
        Diabetes. 1996; 45: 1379-1385
        • Bandyopadhyay D.
        • Kusari A.
        • Kenner K.A.
        • Liu F.
        • Chernoff J.
        • Gustafson T.A.
        • et al.
        Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin.
        J Biol Chem. 1997; 272: 1639-1645
        • Wang X.Y.
        • Bergdahl K.
        • Heijbel A.
        • Liljebris C.
        • Bleasdale J.E.
        Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors.
        Mol Cell Endocrinol. 2001; 173: 109-120
        • Puius Y.A.
        • Zhao Y.
        • Sullivan M.
        • Lawrence D.S.
        • Almo S.C.
        • Zhang Z.Y.
        Identification of a second aryl phosphate–binding site in protein-tyrosine phosphatase 1b—a paradigm for inhibitor design.
        Proc Natl Acad Sci. 1997; 94: 13420-13425
        • Salmeen A.
        • Andersen J.N.
        • Myers M.P.
        • Tonks N.K.
        • Barford D.
        Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B.
        Mol Cell. 2000; 6: 1401-1412
        • Calera M.R.
        • Vallega G.
        • Pilch P.F.
        Dynamics of protein-tyrosine phosphatases in rat adipocytes.
        J Biol Chem. 2000; 275: 6308-6312