Advertisement

The effects of glucocorticoids on adipose tissue lipid metabolism

      Abstract

      Glucocorticoids (GCs) have long been accepted as being catabolic in nature, liberating energy substrates during times of stress to supply the increased metabolic demand of the body. The effects of GCs on adipose tissue metabolism are conflicting, however, because patients with elevated GCs present with central adiposity. We performed an extensive literature review of the effects of GCs on adipose tissue metabolism. The contradictory effects of GCs on lipid metabolism occur through a number of different mechanisms, some of which are well defined and others remain to be elucidated. Firstly, through increases in caloric and dietary fat intake, along with increased hydrolysis of circulating triglycerides (chylomicrons, very low-density lipoproteins) by lipoprotein lipase activity, GCs increase the amount of fatty acids in circulation, which are then available for ectopic fat distribution (liver, muscle, and central adipocytes). Glucocorticoids also increase de novo lipid production in hepatocytes through increased expression of fatty acid synthase. There is some controversy as to whether these same mechanisms occur in adipocytes, thereby contributing to adipose hypertrophy. Glucocorticoids promote preadipocyte conversion to mature adipocytes, causing hyperplasia of the adipose tissue. Glucocorticoids also have acute antilipolytic effect on adipocytes, whereas their genomic actions facilitate increased lipolysis after about 48 hours of exposure. The acute and long-term effects of GCs on adipose tissue lipolysis remain unclear. Although considerable evidence supports the notion that GCs increase lipolysis through glucocorticoid-induced increases of lipase expression, they clearly have antilipolytic effects within these same tissues and cell line models.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rebuffe-Scrive M.
        • Krotkiewski M.
        • Elfverson J.
        • Bjorntorp P.
        Muscle and adipose tissue morphology and metabolism in Cushing's syndrome.
        J Clin Endocrinol Metab. 1988; 67: 1122-1128
        • Masuzaki H.
        • Paterson J.
        • Shinyama H.
        • Morton N.M.
        • Mullins J.J.
        • Seckl J.R.
        • et al.
        A transgenic model of visceral obesity and the metabolic syndrome.
        Science. 2001; 294: 2166-2170
        • Xu C.
        • He J.
        • Jiang H.
        • Zu L.
        • Zhai W.
        • Pu S.
        • et al.
        Direct effect of glucocorticoids on lipolysis in adipocytes.
        Mol Endocrinol. 2009; 23: 1161-1170
        • Delitala G.
        • Tomasi P.
        • Virdis R.
        Prolactin, growth hormone and thyrotropin-thyroid hormone secretion during stress states in man.
        Baillieres Clin Endocrinol Metab. 1987; 1: 391-414
        • Skuse D.
        • Albanese A.
        • Stanhope R.
        • Gilmour J.
        • Voss L.
        A new stress-related syndrome of growth failure and hyperphagia in children, associated with reversibility of growth-hormone insufficiency.
        Lancet. 1996; 348: 353-358
        • Selye H.
        Stress and the general adaptation syndrome.
        Br Med J. 1950; 1: 1383-1392
        • Molina M.E.
        Weitz M. Naglieri C. Endocrine physiology. 3rd ed. McGraw-Hill, United States2010
        • Zhou J.
        • Cidlowski J.A.
        The human glucocorticoid receptor: one gene, multiple proteins and diverse responses.
        Steroids. 2005; 70: 407-417
        • Fain J.N.
        • Dodd A.
        • Novak L.
        Enzyme regulation in gluconeogenesis and lipogenesis. relationship of protein synthesis and cyclic AMP to lipolytic action of growth hormone and glucocorticoids.
        Metabolism. 1971; 20: 109-118
        • Haller J.
        • Mikics E.
        • Makara G.B.
        The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings.
        Front Neuroendocrinol. 2008; 29: 273-291
        • Yang S.
        • Mulder H.
        • Holm C.
        • Eden S.
        Effects of growth hormone on the function of beta-adrenoceptor subtypes in rat adipocytes.
        Obes Res. 2004; 12: 330-339
        • Haemmerle G.
        • Lass A.
        • Zimmermann R.
        • Gorkiewicz G.
        • Meyer C.
        • Rozman J.
        • et al.
        Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase.
        Science. 2006; 312: 734-737
        • Campbell J.E.
        • Peckett A.J.
        • D'souza A.M.
        • Hawke T.J.
        • Riddell M.C.
        Adipogenic and lipolytic effects of chronic glucocorticoid exposure.
        Am J Physiol Cell Physiol. 2011; 300: C198-209
        • Fain JN
        • Saperstein R
        The involvement of RNA synthesis and cyclic AMP in the activation of fat cell lipolysis by growth hormone and glucocorticoids.
        Horm Metab Res. 1970; 2: 20-27
        • Slavin B.G.
        • Ong J.M.
        • Kern P.A.
        Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes.
        J Lipid Res. 1994; 35: 1535-1541
        • Martin S.
        • Okano S.
        • Kistler C.
        • Fernandez-Rojo M.A.
        • Hill M.M.
        • Parton R.G.
        Spatiotemporal regulation of early lipolytic signaling in adipocytes.
        J Biol Chem. 2009; 284: 32097-32107
        • Shen W.J.
        • Patel S.
        • Miyoshi H.
        • Greenberg A.S.
        • Kraemer F.B.
        Functional interaction of hormone-sensitive lipase and perilipin in lipolysis.
        J Lipid Res. 2009; 50: 2306-2313
        • Zechner R.
        • Kienesberger P.C.
        • Haemmerle G.
        • Zimmermann R.
        • Lass A.
        Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores.
        J Lipid Res. 2009; 50: 3-21
        • Schweiger M.
        • Schreiber R.
        • Haemmerle G.
        • Lass A.
        • Fledelius C.
        • Jacobsen P.
        • et al.
        Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.
        J Biol Chem. 2006; 281: 40236-40241
        • Manganiello V.C.
        • Degerman E.
        • Taira M.
        • Kono T.
        • Belfrage III, P.
        Type cyclic nucleotide phosphodiesterases and insulin action.
        Curr Top Cell Regul. 1996; 34: 63-100
        • Richelsen B.
        • Pedersen S.B.
        • Moller-Pedersen T.
        • Bak J.F.
        Regional differences in triglyceride breakdown in human adipose tissue: effects of catecholamines, insulin, and prostaglandin E2.
        Metabolism. 1991; 40: 990-996
        • Ottosson M.
        • Lonnroth P.
        • Bjorntorp P.
        • Eden S.
        Effects of cortisol and growth hormone on lipolysis in human adipose tissue.
        J Clin Endocrinol Metab. 2000; 85: 799-803
        • Buren J.
        • Lai Y.C.
        • Lundgren M.
        • Eriksson J.W.
        • Jensen J.
        Insulin action and signalling in fat and muscle from dexamethasone-treated rats.
        Arch Biochem Biophys. 2008; 474: 91-101
        • Lamberts S.W.
        • Timmermans H.A.
        • Kramer-Blankestijn M.
        • Birkenhager J.C.
        The mechanism of the potentiating effect of glucocorticoids on catecholamine-induced lipolysis.
        Metabolism. 1975; 24: 681-689
        • van Jaarsveld C.H.
        • Fidler J.A.
        • Steptoe A.
        • Boniface D.
        • Wardle J.
        Perceived stress and weight gain in adolescence: a longitudinal analysis.
        Obesity (Silver Spring). 2009; 17: 2155-2161
        • Stewart P.M.
        Petersenn S. Rationale for treatment and therapeutic options in Cushing's disease.
        Best Pract Res Clin Endocrinol Metab. 2009; 23: S15-S22
        • McDonough A.K.
        • Curtis J.R.
        • Saag K.G.
        The epidemiology of glucocorticoid-associated adverse events.
        Curr Opin Rheumatol. 2008; 20: 131-137
        • Friedman T.C.
        • Mastorakos G.
        • Newman T.D.
        • Mullen N.M.
        • Horton E.G.
        • Costello R.
        • et al.
        Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM.
        Endocr J. 1996; 43: 645-655
        • Abad V.
        • Chrousos G.P.
        • Reynolds J.C.
        • Nieman L.K.
        • Hill S.C.
        • Weinstein R.S.
        • et al.
        Glucocorticoid excess during adolescence leads to a major persistent deficit in bone mass and an increase in central body fat.
        J Bone Miner Res. 2001; 16: 1879-1885
        • Jahng J.W.
        • Kim N.Y.
        • Ryu V.
        • Yoo S.B.
        • Kim B.T.
        • Kang D.W.
        • et al.
        Dexamethasone reduces food intake, weight gain and the hypothalamic 5-HT concentration and increases plasma leptin in rats.
        Eur J Pharmacol. 2008; 581: 64-70
        • Rebuffe-Scrive M.
        • Walsh U.A.
        • McEwen B.
        • Rodin J.
        Effect of chronic stress and exogenous glucocorticoids on regional fat distribution and metabolism.
        Physiol Behav. 1992; 52: 583-590
        • Lee M.J.
        • Wang Y.
        • Ricci M.R.
        • Sullivan S.
        • Russell C.D.
        • Fried S.K.
        Acute and chronic regulation of leptin synthesis, storage, and secretion by insulin and dexamethasone in human adipose tissue.
        Am J Physiol Endocrinol Metab. 2007; 292: E858-E864
        • Degawa-Yamauchi M.
        • Moss K.A.
        • Bovenkerk J.E.
        • Shankar S.S.
        • Morrison C.L.
        • Lelliott C.J.
        • et al.
        Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha.
        Obes Res. 2005; 13: 662-669
        • Desbriere R.
        • Vuaroqueaux V.
        • Achard V.
        • Boullu-Ciocca S.
        • Labuhn M.
        • Dutour A.
        • et al.
        11beta-Hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients.
        Obesity (Silver Spring). 2006; 14: 794-798
        • Kato S.
        • Masunaga R.
        • Kawabe T.
        • Nagasaka A.
        • Miyamoto T.
        • Itoh M.
        • et al.
        Cushing's syndrome induced by hypersecretion of cortisol from only one of bilateral adrenocortical tumors.
        Metabolism. 1992; 41: 260-263
        • Fediuc S.
        • Campbell J.E.
        • Riddell M.C.
        Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats.
        J Appl Physiol. 2006; 100: 1867-1875
        • Coutinho A.E.
        • Campbell J.E.
        • Fediuc S.
        • Riddell M.C.
        Effect of voluntary exercise on peripheral tissue glucocorticoid receptor content and the expression and activity of 11beta-HSD1 in the Syrian hamster.
        J Appl Physiol. 2006; 100: 1483-1488
        • Campbell J.E.
        • Fediuc S.
        • Hawke T.J.
        • Riddell M.C.
        Endurance exercise training increases adipose tissue glucocorticoid exposure: adaptations that facilitate lipolysis.
        Metabolism. 2009; 58: 651-660
        • Campbell J.E.
        • Rakhshani N.
        • Fediuc S.
        • Bruni S.
        • Riddell M.C.
        Voluntary wheel running initially increases adrenal sensitivity to adrenocorticotrophic hormone, which is attenuated with long-term training.
        J Appl Physiol. 2009; 106: 66-72
        • Andrew R.
        • Phillips D.I.
        • Walker B.R.
        Obesity and gender influence cortisol secretion and metabolism in man.
        J Clin Endocrinol Metab. 1998; 83: 1806-1809
        • Strain G.W.
        • Zumoff B.
        • Strain J.J.
        • Levin J.
        • Fukushima D.K.
        Cortisol production in obesity.
        Metabolism. 1980; 29: 980-985
        • Kumari M.
        • Chandola T.
        • Brunner E.
        • Kivimaki M.
        A nonlinear relationship of generalized and central obesity with diurnal cortisol secretion in the Whitehall II study.
        J Clin Endocrinol Metab. 2010; 95: 4415-4423
        • Seckl J.R.
        • Morton N.M.
        • Chapman K.E.
        • Walker B.R.
        Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue.
        Recent Prog Horm Res. 2004; 59: 359-393
        • Campbell J.E.
        • Kiraly M.A.
        • Atkinson D.J.
        • D'souza A.M.
        • Vranic M.
        • Riddell M.C.
        Regular exercise prevents the development of hyperglucocorticoidemia via adaptations in the brain and adrenal glands in male Zucker diabetic fatty rats.
        Am J Physiol Regul Integr Comp Physiol. 2010; 299: R168-R176
        • Walker B.R.
        • Andrew R.
        Tissue production of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 and metabolic disease.
        Ann N Y Acad Sci. 2006; 1083: 165-184
        • Rask E.
        • Walker B.R.
        • Soderberg S.
        • Livingstone D.E.
        • Eliasson M.
        • Johnson O.
        • et al.
        Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity.
        J Clin Endocrinol Metab. 2002; 87: 3330-3336
        • Bujalska I.J.
        • Kumar S.
        • Stewart P.M.
        Does central obesity reflect “Cushing's disease of the omentum”?.
        Lancet. 1997; 349: 1210-1213
        • Rebuffe-Scrive M.
        • Bronnegard M.
        • Nilsson A.
        • Eldh J.
        • Gustafsson J.A.
        • Bjorntorp P.
        Steroid hormone receptors in human adipose tissues.
        J Clin Endocrinol Metab. 1990; 71: 1215-1219
        • Sjogren J.
        • Weck M.
        • Nilsson A.
        • Ottosson M.
        • Bjorntorp P.
        Glucocorticoid hormone binding to rat adipocytes.
        Biochim Biophys Acta. 1994; 1224: 17-21
        • Fain J.N.
        • Kovacev V.P.
        • Scow R.O.
        Effect of growth hormone and dexamethasone on lipolysis and metabolism in isolated fat cells of the rat.
        J Biol Chem. 1965; 240: 3522-3529
        • Leibowitz S.F.
        • Sladek C.
        • Spencer L.
        • Tempel D.
        Neuropeptide Y, epinephrine and norepinephrine in the paraventricular nucleus: stimulation of feeding and the release of corticosterone, vasopressin and glucose.
        Brain Res Bull. 1988; 21: 905-912
        • Dallman M.F.
        • la Fleur S.E.
        • Pecoraro N.C.
        • Gomez F.
        • Houshyar H.
        • Akana S.F.
        Minireview: glucocorticoids—food intake, abdominal obesity, and wealthy nations in 2004.
        Endocrinology. 2004; 145: 2633-2638
        • Bogdan A.
        • Bouchareb B.
        • Touitou Y.
        Ramadan fasting alters endocrine and neuroendocrine circadian patterns. meal-time as a synchronizer in humans?.
        Life Sci. 2001; 68: 1607-1615
        • Dallman M.F.
        • Akana S.F.
        • Bhatnagar S.
        • Bell M.E.
        • Choi S.
        • Chu A.
        • et al.
        Starvation: early signals, sensors, and sequelae.
        Endocrinology. 1999; 140: 4015-4023
        • Strack A.M.
        • Sebastian R.J.
        • Schwartz M.W.
        • Dallman M.F.
        Glucocorticoids and insulin: reciprocal signals for energy balance.
        Am J Physiol. 1995; 268: R142-R149
        • Dallman M.F.
        • Pecoraro N.C.
        • la Fleur S.E.
        Chronic stress and comfort foods: self-medication and abdominal obesity.
        Brain Behav Immun. 2005; 19: 275-280
        • Epel E.
        • Lapidus R.
        • McEwen B.
        • Brownell K.
        Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior.
        Psychoneuroendocrinology. 2001; 26: 37-49
        • Castonguay T.W.
        Glucocorticoids as modulators in the control of feeding.
        Brain Res Bull. 1991; 27: 423-428
        • Nakayama S.
        • Nishiyama M.
        • Iwasaki Y.
        • Shinahara M.
        • Okada Y.
        • Tsuda M.
        • et al.
        Corticotropin-releasing hormone (CRH) transgenic mice display hyperphagia with increased agouti-related protein mRNA in the hypothalamic arcuate nucleus.
        Endocr J. 2011;
        • Oliver J.D.
        • Rogers M.P.
        Stimulation of lipoprotein lipase synthesis by refeeding, insulin and dexamethasone.
        Biochem J. 1993; 292: 525-530
        • Appel B.
        • Fried S.K.
        Effects of insulin and dexamethasone on lipoprotein lipase in human adipose tissue.
        Am J Physiol. 1992; 262: E695-E699
        • Fried S.K.
        • Russell C.D.
        • Grauso N.L.
        • Brolin R.E.
        Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men.
        J Clin Invest. 1993; 92: 2191-2198
        • Ottosson M.
        • Vikman-Adolfsson K.
        • Enerback S.
        • Olivecrona G.
        • Bjorntorp P.
        The effects of cortisol on the regulation of lipoprotein lipase activity in human adipose tissue.
        J Clin Endocrinol Metab. 1994; 79: 820-825
        • Fried S.K.
        • Bunkin D.A.
        • Greenberg A.S.
        Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid.
        J Clin Endocrinol Metab. 1998; 83: 847-850
        • Ong J.M.
        • Saffari B.
        • Simsolo R.B.
        • Kern P.A.
        Epinephrine inhibits lipoprotein lipase gene expression in rat adipocytes through multiple steps in posttranscriptional processing.
        Mol Endocrinol. 1992; 6: 61-69
        • Bujalska I.J.
        • Kumar S.
        • Hewison M.
        • Stewart P.M.
        Differentiation of adipose stromal cells: the roles of glucocorticoids and 11beta-hydroxysteroid dehydrogenase.
        Endocrinology. 1999; 140: 3188-3196
        • Hauner H.
        • Entenmann G.
        • Wabitsch M.
        • Gaillard D.
        • Ailhaud G.
        • Negrel R.
        • et al.
        Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium.
        J Clin Invest. 1989; 84: 1663-1670
        • Pantoja C.
        • Huff J.T.
        • Yamamoto K.R.
        Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro.
        Mol Biol Cell. 2008; 19: 4032-4041
        • Berdanier C.D.
        Role of glucocorticoids in the regulation of lipogenesis.
        FASEB J. 1989; 3: 2179-2183
        • Wang Y.
        • Jones Voy B.
        • Urs S.
        • Kim S.
        • Soltani-Bejnood M.
        • Quigley N.
        • et al.
        The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue.
        J Nutr. 2004; 134: 1032-1038
        • Bagdade J.D.
        • Yee E.
        • Albers J.
        • Pykalisto O.J.
        Glucocorticoids and triglyceride transport: effects on triglyceride secretion rates, lipoprotein lipase, and plasma lipoproteins in the rat.
        Metabolism. 1976; 25: 533-542
        • Minshull M.
        • Strong C.R.
        The stimulation of lipogenesis in white adipose tissue from fed rats by corticosterone.
        Int J Biochem. 1985; 17: 529-532
        • Volpe J.J.
        • Marasa J.C.
        Hormonal regulation of fatty acid synthetase, acetyl-CoA carboxylase and fatty acid synthesis in mammalian adipose tissue and liver.
        Biochim Biophys Acta. 1975; 380: 454-472
        • Jeanrenaud B.
        Effect of glucocorticoid hormones on fatty acid mobilization and re-esterification in rat adipose tissue.
        Biochem J. 1967; 103: 627-633
        • Franckhauser S.
        • Antras-Ferry J.
        • Robin P.
        • Robin D.
        • Granner D.K.
        • Forest C.
        Expression of the phosphoenolpyruvate carboxykinase gene in 3T3-F442A adipose cells: opposite effects of dexamethasone and isoprenaline on transcription.
        Biochem J. 1995; 305: 65-71
        • Samra J.S.
        • Clark M.L.
        • Humphreys S.M.
        • MacDonald I.A.
        • Bannister P.A.
        • Frayn K.N.
        Effects of physiological hypercortisolemia on the regulation of lipolysis in subcutaneous adipose tissue.
        J Clin Endocrinol Metab. 1998; 83: 626-631