Advertisement
Reviews| Volume 61, ISSUE 7, P906-921, July 2012

Download started.

Ok

A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease

Published:February 10, 2012DOI:https://doi.org/10.1016/j.metabol.2011.12.002

      Abstract

      The focus of this review is on the role of apolipoprotein C-II (apoC-II) in lipoprotein metabolism and the potential effects on the risk of cardiovascular disease (CVD). We searched PubMed/Scopus for articles regarding apoC-II and its role in lipoprotein metabolism and the risk of CVD. Apolipoprotein C-II is a constituent of chylomicrons, very low-density lipoprotein, low-density lipoprotein, and high-density lipoprotein (HDL). Apolipoprotein C-II contains 3 amphipathic α-helices. The lipid-binding domain of apoC-II is located in the N-terminal, whereas the C-terminal helix of apoC-II is responsible for the interaction with lipoprotein lipase (LPL). At intermediate concentrations (approximately 4 mg/dL) and in normolipidemic subjects, apoC-II activates LPL. In contrast, both an excess and a deficiency of apoC-II are associated with reduced LPL activity and hypertriglyceridemia. Furthermore, excess apoC-II has been associated with increased triglyceride-rich particles and alterations in HDL particle distribution, factors that may increase the risk of CVD. However, there is not enough current evidence to clarify whether increased apoC-II causes hypertriglyceridemia or is an epiphenomenon reflecting hypertriglyceridemia. A number of pharmaceutical interventions, including statins, fibrates, ezetimibe, nicotinic acid, and orlistat, have been shown to reduce the increased apoC-II concentrations. An excess of apoC-II is associated with increased triglyceride-rich particles and alterations in HDL particle distribution. However, prospective trials are needed to assess if apoC-II is a CVD marker or a risk factor in high-risk patients.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jong M.C.
        • Hofker M.H.
        • Havekes L.M.
        Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3.
        Arterioscler Thromb Vasc Biol. 1999; 19: 472-484
        • Ooi E.M.
        • Barrett P.H.
        • Chan D.C.
        • et al.
        Apolipoprotein C-III: understanding an emerging cardiovascular risk factor.
        Clin Sci (Lond). 2008; 114: 611-624
        • Tomkin G.H.
        The intestine as a regulator of cholesterol homeostasis in diabetes.
        Atheroscler Suppl. 2008; 9: 27-32
        • Rutledge A.C.
        • Su Q.
        • Adeli K.
        Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assembly.
        Biochem Cell Biol. 2010; 88: 251-267
        • Verges B.
        Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes.
        Atherosclerosis. 2010; 211: 353-360
        • Goldberg I.J.
        • Kako Y.
        • Lutz E.P.
        Responses to eating: lipoproteins, lipolytic products and atherosclerosis.
        Curr Opin Lipidol. 2000; 11: 235-241
        • Goldberg I.J.
        Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis.
        J Lipid Res. 1996; 37: 693-707
        • Bjorkegren J.
        • Karpe F.
        • Milne R.W.
        • et al.
        Differences in apolipoprotein and lipid composition between human chylomicron remnants and very low density lipoproteins isolated from fasting and postprandial plasma.
        J Lipid Res. 1998; 39: 1412-1420
        • Karpe F.
        Postprandial lipoprotein metabolism and atherosclerosis.
        J Intern Med. 1999; 246: 341-355
        • Mahley R.W.
        • Ji Z.S.
        Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E.
        J Lipid Res. 1999; 40: 1-16
        • Lillis A.P.
        • Van Duyn L.B.
        • Murphy-Ullrich J.E.
        • et al.
        LDL receptor–related protein 1: unique tissue-specific functions revealed by selective gene knockout studies.
        Physiol Rev. 2008; 88: 887-918
        • Stanford K.I.
        • Bishop J.R.
        • Foley E.M.
        • et al.
        Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice.
        J Clin Invest. 2009; 119: 3236-3245
        • Mahley R.W.
        • Huang Y.
        Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing.
        J Clin Invest. 2007; 117: 94-98
        • Williams K.J.
        Molecular processes that handle—and mishandle—dietary lipids.
        J Clin Invest. 2008; 118: 3247-3259
        • Lewis G.F.
        • Rader D.J.
        New insights into the regulation of HDL metabolism and reverse cholesterol transport.
        Circ Res. 2005; 96: 1221-1232
        • Jin W.
        • Marchadier D.
        • Rader D.J.
        Lipases and HDL metabolism.
        Trends Endocrinol Metab. 2002; 13: 174-178
        • Lenich C.
        • Brecher P.
        • Makrides S.
        • et al.
        Apolipoprotein gene expression in the rabbit: abundance, size, and distribution of apolipoprotein mRNA species in different tissues.
        J Lipid Res. 1988; 29: 755-764
        • Zannis V.I.
        • Cole F.S.
        • Jackson C.L.
        • et al.
        Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages.
        Biochemistry. 1985; 24: 4450-4455
        • Myklebost O.
        • Williamson B.
        • Markham A.F.
        • et al.
        The isolation and characterization of cDNA clones for human apolipoprotein CII.
        J Biol Chem. 1984; 259: 4401-4404
        • Chun E.M.
        • Park Y.J.
        • Kang H.S.
        • et al.
        Expression of the apolipoprotein C-II gene during myelomonocytic differentiation of human leukemic cells.
        J Leukoc Biol. 2001; 69: 645-650
        • Mak P.A.
        • Laffitte B.A.
        • Desrumaux C.
        • et al.
        Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role for nuclear liver X receptors alpha and beta.
        J Biol Chem. 2002; 277: 31900-31908
        • Hoffer M.J.
        • van Eck M.M.
        • Havekes L.M.
        • et al.
        Structure and expression of the mouse apolipoprotein C2 gene.
        Genomics. 1993; 17: 45-51
        • Wang-Iverson P.
        • Gibson J.C.
        • Brown W.V.
        Plasma apolipoprotein secretion by human monocyte-derived macrophages.
        Biochim Biophys Acta. 1985; 834: 256-262
        • Jackson C.L.
        • Bruns G.A.
        • Breslow J.L.
        Isolation and sequence of a human apolipoprotein CII cDNA clone and its use to isolate and map to human chromosome 19 the gene for apolipoprotein CII.
        Proc Natl Acad Sci U S A. 1984; 81: 2945-2949
        • Li W.H.
        • Tanimura M.
        • Luo C.C.
        • et al.
        The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution.
        J Lipid Res. 1988; 29: 245-271
        • Allan C.M.
        • Taylor S.
        • Taylor J.M.
        Two hepatic enhancers, HCR.1 and HCR.2, coordinate the liver expression of the entire human apolipoprotein E/C-I/C-IV/C-II gene cluster.
        J Biol Chem. 1997; 272: 29113-29119
        • Vorgia P.
        • Zannis V.I.
        • Kardassis D.
        A short proximal promoter and the distal hepatic control region–1 (HCR-1) contribute to the liver specificity of the human apolipoprotein C-II gene. Hepatic enhancement by HCR-1 requires two proximal hormone response elements which have different binding specificities for orphan receptors HNF-4, ARP-1, and EAR-2.
        J Biol Chem. 1998; 273: 4188-4196
        • Kardassis D.
        • Roussou A.
        • Papakosta P.
        • et al.
        Synergism between nuclear receptors bound to specific hormone response elements of the hepatic control region–1 and the proximal apolipoprotein C-II promoter mediate apolipoprotein C-II gene regulation by bile acids and retinoids.
        Biochem J. 2003; 372: 291-304
        • Melhuish T.A.
        • Chung D.D.
        • Bjerke G.A.
        • et al.
        Tgif1 represses apolipoprotein gene expression in liver.
        J Cell Biochem. 2010; 111: 380-390
        • Andersson Y.
        • Majd Z.
        • Lefebvre A.M.
        • et al.
        Developmental and pharmacological regulation of apolipoprotein C-II gene expression. Comparison with apo C-I and apo C-III gene regulation.
        Arterioscler Thromb Vasc Biol. 1999; 19: 115-121
        • Girard J.
        • Perdereau D.
        • Foufelle F.
        • et al.
        Regulation of lipogenic enzyme gene expression by nutrients and hormones.
        Faseb J. 1994; 8: 36-42
        • Chen C.H.
        • Cao Y.L.
        • Hu W.C.
        Apolipoprotein C-II promoter T–>A substitution at position -190 affects on the transcription of the gene and its relationship to hyperlipemia.
        Biochem Biophys Res Commun. 2007; 354: 62-65
        • Kuniyoshi A.
        • Okamoto Y.
        • Tamagawa T.
        • et al.
        A thymidine to cytosine substitution for codon 26 of exon 3 of apolipoprotein C-II gene in a patient with apolipoprotein C-II deficiency.
        Intern Med. 1999; 38: 140-144
        • Nauck M.S.
        • Nissen H.
        • Hoffmann M.M.
        • et al.
        Detection of mutations in the apolipoprotein CII gene by denaturing gradient gel electrophoresis. Identification of the splice site variant apolipoprotein CII-Hamburg in a patient with severe hypertriglyceridemia.
        Clin Chem. 1998; 44: 1388-1396
        • Streicher R.
        • Avci H.
        • Munck M.
        • et al.
        Structure of the human apolipoprotein C-II gene promoter.
        Z Gastroenterol. 1996; 34: 49-50
        • Tuzgol S.
        • Bijvoet S.M.
        • Bruin T.
        • et al.
        Apolipoprotein CII-Padova (Tyr37–>stop) as a cause of chylomicronaemia in an Italian kindred from Siculiana.
        J Med Genet. 1994; 31: 622-626
        • Zysow B.R.
        • Pullinger C.R.
        • Hennessy L.K.
        • et al.
        The apolipoprotein C-II variant apoC-IILys19–>Thr is not associated with dyslipidemia in an affected kindred.
        Clin Genet. 1994; 45: 292-297
        • Zanelli T.
        • Catapano A.L.
        • Averna M.R.
        • et al.
        A new case of apo C-II deficiency with a nonsense mutation in the apo C-II gene.
        Clin Chim Acta. 1994; 224: 111-118
        • Inadera H.
        • Hibino A.
        • Kobayashi J.
        • et al.
        A missense mutation (Trp 26–>Arg) in exon 3 of the apolipoprotein CII gene in a patient with apolipoprotein CII deficiency (apo CII-Wakayama).
        Biochem Biophys Res Commun. 1993; 193: 1174-1183
        • Capurso A.
        • Resta F.
        • Turturro F.
        • et al.
        Apo C-II deficiency type Bari.
        Eur J Epidemiol. 1992; 8: 64-70
        • Parrott C.L.
        • Alsayed N.
        • Rebourcet R.
        • et al.
        ApoC-IIParis2: a premature termination mutation in the signal peptide of apoC-II resulting in the familial chylomicronemia syndrome.
        J Lipid Res. 1992; 33: 361-367
        • Beil F.U.
        • Fojo S.S.
        • Brewer Jr, H.B.
        • et al.
        Apolipoprotein C-II deficiency syndrome due to apo C-IIHamburg: clinical and biochemical features and HphI restriction enzyme polymorphism.
        Eur J Clin Invest. 1992; 22: 88-95
        • Fojo S.S.
        • Baggio G.
        • Gabelli C.
        • et al.
        Apolipoprotein C-II deficiency: identification of a structural variant ApoC-II Padova.
        Biochem Biophys Res Commun. 1988; 154: 73-79
        • Maguire G.F.
        • Little J.A.
        • Kakis G.
        • et al.
        Apolipoprotein C-II deficiency associated with nonfunctional mutant forms of apolipoprotein C-II.
        Can J Biochem Cell Biol. 1984; 62: 847-852
        • Fojo S.S.
        • Beisiegel U.
        • Beil U.
        • et al.
        Donor splice site mutation in the apolipoprotein (Apo) C-II gene (Apo C-IIHamburg) of a patient with Apo C-II deficiency.
        J Clin Invest. 1988; 82: 1489-1494
        • Okubo M.
        • Hasegawa Y.
        • Aoyama Y.
        • et al.
        A G+1 to C mutation in a donor splice site of intron 2 in the apolipoprotein (apo) C-II gene in a patient with apo C-II deficiency. A possible interaction between apo C-II deficiency and apo E4 in a severely hypertriglyceridemic patient.
        Atherosclerosis. 1997; 130: 153-160
        • Fojo S.S.
        • de Gennes J.L.
        • Chapman J.
        • et al.
        An initiation codon mutation in the apoC-II gene (apoC-II Paris) of a patient with a deficiency of apolipoprotein C-II.
        J Biol Chem. 1989; 264: 20839-20842
        • Connelly P.W.
        • Maguire G.F.
        • Hofmann T.
        • et al.
        Structure of apolipoprotein C-IIToronto, a nonfunctional human apolipoprotein.
        Proc Natl Acad Sci U S A. 1987; 84: 270-273
        • Fojo S.S.
        • Stalenhoef A.F.
        • Marr K.
        • et al.
        A deletion mutation in the ApoC-II gene (ApoC-II Nijmegen) of a patient with a deficiency of apolipoprotein C-II.
        J Biol Chem. 1988; 263: 17913-17916
        • Xiong W.J.
        • Li W.H.
        • Posner I.
        • et al.
        No severe bottleneck during human evolution: evidence from two apolipoprotein C-II deficiency alleles.
        Am J Hum Genet. 1991; 48: 383-389
        • Fojo S.S.
        • Lohse P.
        • Parrott C.
        • et al.
        A nonsense mutation in the apolipoprotein C-IIPadova gene in a patient with apolipoprotein C-II deficiency.
        J Clin Invest. 1989; 84: 1215-1219
        • Crecchio C.
        • Capurso A.
        • Pepe G.
        Identification of the mutation responsible for a case of plasmatic apolipoprotein CII deficiency (Apo CII-Bari).
        Biochem Biophys Res Commun. 1990; 168: 1118-1127
        • Wang C.S.
        Structure and functional properties of apolipoprotein C-II.
        Prog Lipid Res. 1991; 30: 253-258
        • Zdunek J.
        • Martinez G.V.
        • Schleucher J.
        • et al.
        Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase.
        Biochemistry. 2003; 42: 1872-1889
        • MacPhee C.E.
        • Howlett G.J.
        • Sawyer W.H.
        • et al.
        Helix-helix association of a lipid-bound amphipathic alpha-helix derived from apolipoprotein C-II.
        Biochemistry. 1999; 38: 10878-10884
        • Musliner T.A.
        • Herbert P.N.
        • Church E.C.
        Activation of lipoprotein lipase by native and acylated peptides of apolipoprotein C-II.
        Biochim Biophys Acta. 1979; 573: 501-509
        • Shen Y.
        • Lookene A.
        • Nilsson S.
        • et al.
        Functional analyses of human apolipoprotein CII by site-directed mutagenesis: identification of residues important for activation of lipoprotein lipase.
        J Biol Chem. 2002; 277: 4334-4342
        • MacRaild C.A.
        • Hatters D.M.
        • Howlett G.J.
        • et al.
        NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate.
        Biochemistry. 2001; 40: 5414-5421
        • Shen Y.
        • Lookene A.
        • Zhang L.
        • et al.
        Site-directed mutagenesis of apolipoprotein CII to probe the role of its secondary structure for activation of lipoprotein lipase.
        J Biol Chem. 2010; 285: 7484-7492
        • Storjohann R.
        • Rozek A.
        • Sparrow J.T.
        • et al.
        Structure of a biologically active fragment of human serum apolipoprotein C-II in the presence of sodium dodecyl sulfate and dodecylphosphocholine.
        Biochim Biophys Acta. 2000; 1486: 253-264
        • MacRaild C.A.
        • Howlett G.J.
        • Gooley P.R.
        The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine.
        Biochemistry. 2004; 43: 8084-8093
        • Lam C.W.
        • Yuen Y.P.
        • Cheng W.F.
        • et al.
        Missense mutation Leu72Pro located on the carboxyl terminal amphipathic helix of apolipoprotein C-II causes familial chylomicronemia syndrome.
        Clin Chim Acta. 2006; 364: 256-259
        • Hatters D.M.
        • MacPhee C.E.
        • Lawrence L.J.
        • et al.
        Human apolipoprotein C-II forms twisted amyloid ribbons and closed loops.
        Biochemistry. 2000; 39: 8276-8283
        • Pham C.L.
        • Hatters D.M.
        • Lawrence L.J.
        • et al.
        Cross-linking and amyloid formation by N- and C-terminal cysteine derivatives of human apolipoprotein C-II.
        Biochemistry. 2002; 41: 14313-14322
        • Hatters D.M.
        • MacRaild C.A.
        • Daniels R.
        • et al.
        The circularization of amyloid fibrils formed by apolipoprotein C-II.
        Biophys J. 2003; 85: 3979-3990
        • Teoh C.L.
        • Pham C.L.
        • Todorova N.
        • et al.
        A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations.
        J Mol Biol. 2011; 405: 1246-1266
        • Hatters D.M.
        • Howlett G.J.
        The structural basis for amyloid formation by plasma apolipoproteins: a review.
        Eur Biophys J. 2002; 31: 2-8
        • Stewart C.R.
        • Wilson L.M.
        • Zhang Q.
        • et al.
        Oxidized cholesterol metabolites found in human atherosclerotic lesions promote apolipoprotein C-II amyloid fibril formation.
        Biochemistry. 2007; 46: 5552-5561
        • Teoh C.L.
        • Bekard I.B.
        • Asimakis P.
        • et al.
        Shear flow induced changes in apolipoprotein C-II conformation and amyloid fibril formation.
        Biochemistry. 2011; 50: 4046-4057
        • Legge F.S.
        • Binger K.J.
        • Griffin M.D.
        • et al.
        Effect of oxidation and mutation on the conformational dynamics and fibril assembly of amyloidogenic peptides derived from apolipoprotein C-II.
        J Phys Chem B. 2009; 113: 14006-14014
        • Hatters D.M.
        • Lindner R.A.
        • Carver J.A.
        • et al.
        The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II.
        J Biol Chem. 2001; 276: 33755-33761
        • Hatters D.M.
        • Wilson M.R.
        • Easterbrook-Smith S.B.
        • et al.
        Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin.
        Eur J Biochem. 2002; 269: 2789-2794
        • Medeiros L.A.
        • Khan T.
        • El Khoury J.B.
        • et al.
        Fibrillar amyloid protein present in atheroma activates CD36 signal transduction.
        J Biol Chem. 2004; 279: 10643-10648
        • Stewart C.R.
        • Haw 3rd, A.
        • Lopez R.
        • et al.
        Serum amyloid P colocalizes with apolipoproteins in human atheroma: functional implications.
        J Lipid Res. 2007; 48: 2162-2171
        • Curry M.D.
        • McConathy W.J.
        • Fesmire J.D.
        • et al.
        Quantitative determination of apolipoproteins C-I and C-II in human plasma by separate electroimmunoassays.
        Clin Chem. 1981; 27: 543-548
        • Tornoci L.
        • Scheraldi C.A.
        • Li X.
        • et al.
        Abnormal activation of lipoprotein lipase by non-equilibrating apoC-II: further evidence for the presence of non-equilibrating pools of apolipoproteins C-II and C-III in plasma lipoproteins.
        J Lipid Res. 1993; 34: 1793-1803
        • Goldberg I.J.
        • Scheraldi C.A.
        • Yacoub L.K.
        • et al.
        Lipoprotein ApoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV.
        J Biol Chem. 1990; 265: 4266-4272
        • Yamamoto M.
        • Morita S.Y.
        • Kumon M.
        • et al.
        Effects of plasma apolipoproteins on lipoprotein lipase-mediated lipolysis of small and large lipid emulsions.
        Biochim Biophys Acta. 2003; 1632: 31-39
        • Hara M.
        • Iso O.N.
        • Satoh H.
        • et al.
        Differential effects of apolipoprotein E isoforms on lipolysis of very low-density lipoprotein triglycerides.
        Metabolism. 2006; 55: 1129-1134
        • Sakurabayashi I.
        • Saito Y.
        • Kita T.
        • et al.
        Reference intervals for serum apolipoproteins A-I, A-II, B, C-II, C-III, and E in healthy Japanese determined with a commercial immunoturbidimetric assay and effects of sex, age, smoking, drinking, and Lp(a) level.
        Clin Chim Acta. 2001; 312: 87-95
        • LaRosa J.C.
        • Levy R.I.
        • Herbert P.
        • et al.
        A specific apoprotein activator for lipoprotein lipase.
        Biochem Biophys Res Commun. 1970; 41: 57-62
        • Jackson R.L.
        • Tajima S.
        • Yamamura T.
        • et al.
        Comparison of apolipoprotein C-II-deficient triacylglycerol-rich lipoproteins and trioleoylglycerol/phosphatidylcholine-stabilized particles as substrates for lipoprotein lipase.
        Biochim Biophys Acta. 1986; 875: 211-219
        • Baggio G.
        • Manzato E.
        • Gabelli C.
        • et al.
        Apolipoprotein C-II deficiency syndrome. Clinical features, lipoprotein characterization, lipase activity, and correction of hypertriglyceridemia after apolipoprotein C-II administration in two affected patients.
        J Clin Invest. 1986; 77: 520-527
        • AbouRjaili G.
        • Shtaynberg N.
        • Wetz R.
        • et al.
        Current concepts in triglyceride metabolism, pathophysiology, and treatment.
        Metabolism. 2010; 59: 1210-1220
        • Gazi I.F.
        • Tsimihodimos V.
        • Tselepis A.D.
        • et al.
        Clinical importance and therapeutic modulation of small dense low-density lipoprotein particles.
        Expert Opin Biol Ther. 2007; 7: 53-72
        • Fellin R.
        • Baggio G.
        • Poli A.
        • et al.
        Familial lipoprotein lipase and apolipoprotein C-II deficiency. Lipoprotein and apoprotein analysis, adipose tissue and hepatic lipoprotein lipase levels in seven patients and their first degree relatives.
        Atherosclerosis. 1983; 49: 55-68
        • Tian L.
        • Xu Y.
        • Fu M.
        • et al.
        Influence of apolipoproteinCII concentrations on HDL subclass distribution.
        J Atheroscler Thromb. 2009; 16: 611-620
        • Yanai H.
        • Tada N.
        • Yoshida H.
        • et al.
        Diacylglycerol oil for apolipoprotein C-II deficiency.
        QJM. 2007; 100: 247-248
        • Cox D.W.
        • Breckenridge W.C.
        • Little J.A.
        Inheritance of apolipoprotein C-II deficiency with hypertriglyceridemia and pancreatitis.
        N Engl J Med. 1978; 299: 1421-1424
        • Gabelli C.
        • Bilato C.
        • Santamarina-Fojo S.
        • et al.
        Heterozygous apolipoprotein C-II deficiency: lipoprotein and apoprotein phenotype and RsaI restriction enzyme polymorphism in the Apo C-IIPadova kindred.
        Eur J Clin Invest. 1993; 23: 522-528
        • Breckenridge W.C.
        • Alaupovic P.
        • Cox D.W.
        • et al.
        Apolipoprotein and lipoprotein concentrations in familial apolipoprotein C-II deficiency.
        Atherosclerosis. 1982; 44: 223-235
        • Wiebusch H.
        • Nofer J.R.
        • von Eckardstein A.
        • et al.
        Electrophoretic screening for human apolipoprotein C-II variants: repeated identification of apolipoprotein C-II(K19T).
        J Mol Med. 1995; 73: 373-378
        • Hegele R.A.
        • Breckenridge W.C.
        • Cox D.W.
        • et al.
        Interaction between variant apolipoproteins C-II and E that affects plasma lipoprotein concentrations.
        Arterioscler Thromb. 1991; 11: 1303-1309
        • Pogoda T.V.
        • Nikonova A.L.
        • Kolosova T.V.
        • et al.
        Allelic variants of apolipoproteins B and CII genes in patients with ischemic heart disease and in healthy persons from the Moscow population.
        Genetika. 1995; 31: 1001-1009
        • Fornengo P.
        • Bruno A.
        • Gambino R.
        • et al.
        Resistant hypertriglyceridemia in a patient with high plasma levels of apolipoprotein CII.
        Arterioscler Thromb Vasc Biol. 2000; 20: 2329
        • Shachter N.S.
        • Hayek T.
        • Leff T.
        • et al.
        Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice.
        J Clin Invest. 1994; 93: 1683-1690
        • Shirai K.
        • Matsuoka N.
        • Jackson R.L.
        Interaction of lipoprotein lipase with phospholipid vesicles. Role of apolipoprotein C-II and heparin.
        Biochim Biophys Acta. 1981; 665: 504-510
        • Kowal R.C.
        • Herz J.
        • Weisgraber K.H.
        • et al.
        Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein.
        J Biol Chem. 1990; 265: 10771-10779
        • Sehayek E.
        • Eisenberg S.
        Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway.
        J Biol Chem. 1991; 266: 18259-18267
        • Clavey V.
        • Lestavel-Delattre S.
        • Copin C.
        • et al.
        Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and.
        E. Arterioscler Thromb Vasc Biol. 1995; 15: 963-971
        • Huard K.
        • Bourgeois P.
        • Rhainds D.
        • et al.
        Apolipoproteins C-II and C-III inhibit selective uptake of low- and high-density lipoprotein cholesteryl esters in HepG2 cells.
        Int J Biochem Cell Biol. 2005; 37: 1308-1318
        • Tian L.
        • Fu M.
        The relationship between high density lipoprotein subclass profile and apolipoprotein concentrations.
        J Endocrinol Invest. 2011; 34: 461-472
        • Tian L.
        • Wu J.
        • Fu M.
        • et al.
        Relationship between apolipoprotein C-III concentrations and high-density lipoprotein subclass distribution.
        Metabolism. 2009; 58: 668-674
        • Howlett G.J.
        • Moore K.J.
        Untangling the role of amyloid in atherosclerosis.
        Curr Opin Lipidol. 2006; 17: 541-547
        • Miller M.
        • Cannon C.P.
        • Murphy S.A.
        • et al.
        Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial.
        J Am Coll Cardiol. 2008; 51: 724-730
        • Kostapanos M.S.
        • Milionis H.J.
        • Filippatos T.D.
        • et al.
        A 12-week, prospective, open-label analysis of the effect of rosuvastatin on triglyceride-rich lipoprotein metabolism in patients with primary dyslipidemia.
        Clin Ther. 2007; 29: 1403-1414
        • Lagos K.G.
        • Filippatos T.D.
        • Tsimihodimos V.
        • et al.
        Alterations in the high density lipoprotein phenotype and HDL-associated enzymes in subjects with metabolic syndrome.
        Lipids. 2009; 44: 9-16
        • Filippatos T.
        • Tsimihodimos V.
        • Kostapanos M.
        • et al.
        Small dense LDL cholesterol and apolipoproteins C-II and C-III in non-diabetic obese subjects with metabolic syndrome.
        Arc Med Sci. 2008; 3: 263-269
        • Roselli della Rovere G.
        • Lapolla A.
        • Sartore G.
        • et al.
        Plasma lipoproteins, apoproteins and cardiovascular disease in type 2 diabetic patients. A nine-year follow-up study.
        Nutr Metab Cardiovasc Dis. 2003; 13: 46-51
        • Gerber Y.
        • Goldbourt U.
        • Cohen H.
        • et al.
        Association between serum apolipoprotein C(II) concentration and coronary heart disease.
        Prev Med. 2002; 35: 42-47
        • Flood-Nichols S.K.
        • Stallings J.D.
        • Gotkin J.L.
        • et al.
        Elevated ratio of maternal plasma ApoCIII to ApoCII in preeclampsia.
        Reprod Sci. 2011; 18: 493-502
        • Araki S.
        • Okazaki M.
        • Goto S.
        Impaired lipid metabolism in aged mice as revealed by fasting-induced expression of apolipoprotein mRNAs in the liver and changes in serum lipids.
        Gerontology. 2004; 50: 206-215
        • Lecomte E.
        • Herbeth B.
        • Paille F.
        • et al.
        Changes in serum apolipoprotein and lipoprotein profile induced by chronic alcohol consumption and withdrawal: determinant effect on heart disease?.
        Clin Chem. 1996; 42: 1666-1675
        • Sasaki N.
        • Holdsworth G.
        • Barnhart R.L.
        • et al.
        Effect of a high carbohydrate diet on the content of apolipoproteins C-II, C-III and E in human plasma high density lipoprotein subfractions.
        Atherosclerosis. 1983; 46: 341-352
        • Schonfeld G.
        • Weidman S.W.
        • Witztum J.L.
        • et al.
        Alterations in levels and interrelations of plasma apolipoproteins induced by diet.
        Metabolism. 1976; 25: 261-275
        • Puglisi M.J.
        • Mutungi G.
        • Brun P.J.
        • et al.
        Raisins and walking alter appetite hormones and plasma lipids by modifications in lipoprotein metabolism and up-regulation of the low-density lipoprotein receptor.
        Metabolism. 2009; 58: 120-128
        • Guay V.
        • Lamarche B.
        • Charest A.
        • et al.
        Effect of short-term low- and high-fat diets on low-density lipoprotein particle size in normolipidemic subjects.
        Metabolism. 2012; 61: 76-83
        • Borel A.L.
        • Nazare J.A.
        • Smith J.
        • et al.
        Improvement in insulin sensitivity following a 1-year lifestyle intervention program in viscerally obese men: contribution of abdominal adiposity.
        Metabolism. 2012; 61: 262-272
        • Tzotzas T.
        • Filippatos T.D.
        • Triantos A.
        • et al.
        Effects of a low-calorie diet associated with weight loss on lipoprotein-associated phospholipase A2 (Lp-PLA2) activity in healthy obese women.
        Nutr Metab Cardiovasc Dis. 2008; 18: 477-482
        • Koprovicova J.
        • Kollar J.
        • Petrasova D.
        Nutrition, body weight and deterioration of familial combined hyperlipidemia.
        Coll Antropol. 2006; 30: 777-782
        • Filippatos T.D.
        • Randeva H.S.
        • Derdemezis C.S.
        • et al.
        Visfatin/PBEF and atherosclerosis-related diseases.
        Curr Vasc Pharmacol. 2010; 8: 12-28
        • Siahanidou T.
        • Margeli A.
        • Kappis A.
        • et al.
        Circulating visfatin levels in healthy preterm infants are independently associated with high-density lipoprotein cholesterol levels and dietary long-chain polyunsaturated fatty acids.
        Metabolism. 2011; 60: 389-393
        • El-Mesallamy H.O.
        • Kassem D.H.
        • El-Demerdash E.
        • et al.
        Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus.
        Metabolism. 2011; 60: 63-70
        • Filippatos T.D.
        • Derdemezis C.S.
        • Gazi I.F.
        • et al.
        Increased plasma visfatin levels in subjects with the metabolic syndrome.
        Eur J Clin Invest. 2008; 38: 71-72
        • Filippatos T.D.
        • Derdemezis C.S.
        • Kiortsis D.N.
        • et al.
        Increased plasma levels of visfatin/pre-B cell colony-enhancing factor in obese and overweight patients with metabolic syndrome.
        J Endocrinol Invest. 2007; 30: 323-326
        • Filippatos T.D.
        • Tsimihodimos V.
        • Derdemezis C.S.
        • et al.
        Increased plasma visfatin concentration is a marker of an atherogenic metabolic profile.
        Nutr Metab Cardiovasc Dis. 2011; ([in press])
        • Beliard S.
        • Nogueira J.P.
        • Maraninchi M.
        • et al.
        Parallel increase of plasma apoproteins C-II and C-III in type 2 diabetic patients.
        Diabet Med. 2009; 26: 736-739
        • Duan Y.
        • Wu Z.
        • Liu B.
        Relation of plasma glucose levels to serum lipids and apolipoproteins levels in middle and old age males.
        Hua Xi Yi Ke Da Xue Xue Bao. 2001; 32: 382-384
      1. Ren Y, Tian H, Liu B, et al, The abnormal changes of apolipoprotein(s) in patients with type 2 diabetes mellitus. Hua Xi Yi Ke Da Xue Xue Bao 2001; 32:48-51, 69.

        • Hiukka A.
        • Fruchart-Najib J.
        • Leinonen E.
        • et al.
        Alterations of lipids and apolipoprotein CIII in very low density lipoprotein subspecies in type 2 diabetes.
        Diabetologia. 2005; 48: 1207-1215
        • Trevisan R.
        • Dodesini A.R.
        • Lepore G.
        Lipids and renal disease.
        J Am Soc Nephrol. 2006; 17: S145-S147
        • Liu J.
        • Rosner M.H.
        Lipid abnormalities associated with end-stage renal disease.
        Semin Dial. 2006; 19: 32-40
        • Grutzmacher P.
        • Marz W.
        • Peschke B.
        • et al.
        Lipoproteins and apolipoproteins during the progression of chronic renal disease.
        Nephron. 1988; 50: 103-111
        • Kaysen G.A.
        • Kotanko P.
        • Zhu F.
        • et al.
        Relationship between adiposity and cardiovascular risk factors in prevalent hemodialysis patients.
        J Ren Nutr. 2009; 19: 357-364
        • Atger V.
        • Beyne P.
        • Frommherz K.
        • et al.
        Presence of Apo B48, and relative Apo CII deficiency and Apo CIII enrichment in uremic very-low density lipoproteins.
        Ann Biol Clin (Paris). 1989; 47: 497-501
        • Bergesio F.
        • Monzani G.
        • Ciuti R.
        • et al.
        Lipids and apolipoproteins change during the progression of chronic renal failure.
        Clin Nephrol. 1992; 38: 264-270
        • Monzani G.
        • Bergesio F.
        • Ciuti R.
        • et al.
        Lipoprotein abnormalities in chronic renal failure and dialysis patients.
        Blood Purif. 1996; 14: 262-272
        • Hughes T.A.
        • Gaber A.O.
        • Amiri H.S.
        • et al.
        Lipoprotein composition in insulin-dependent diabetes mellitus with chronic renal failure: effect of kidney and pancreas transplantation.
        Metabolism. 1994; 43: 333-347
        • Haas M.J.
        • Mooradian A.D.
        Inflammation, high-density lipoprotein and cardiovascular dysfunction.
        Curr Opin Infect Dis. 2011; 24: 265-272
        • Gazi I.F.
        • Apostolou F.A.
        • Liberopoulos E.N.
        • et al.
        Leptospirosis is associated with markedly increased triglycerides and small dense low-density lipoprotein and decreased high-density lipoprotein.
        Lipids. 2011; 46: 953-960
        • Ripolles Piquer B.
        • Nazih H.
        • Bourreille A.
        • et al.
        Altered lipid, apolipoprotein, and lipoprotein profiles in inflammatory bowel disease: consequences on the cholesterol efflux capacity of serum using Fu5AH cell system.
        Metabolism. 2006; 55: 980-988
        • Baigent C.
        • Keech A.
        • Kearney P.M.
        • et al.
        Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins.
        Lancet. 2005; 366: 1267-1278
        • LaRosa J.C.
        • He J.
        • Vupputuri S.
        Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials.
        JAMA. 1999; 282: 2340-2346
        • Athyros V.G.
        • Kakafika A.I.
        • Tziomalos K.
        • et al.
        Pleiotropic effects of statins—clinical evidence.
        Curr Pharm Des. 2009; 15: 479-489
        • Agouridis A.P.
        • Tsimihodimos V.
        • Filippatos T.D.
        • et al.
        High doses of rosuvastatin are superior to low doses of rosuvastatin plus fenofibrate or n-3 fatty acids in mixed dyslipidemia.
        Lipids. 2011; 46: 521-528
        • Kostapanos M.S.
        • Derdemezis C.S.
        • Filippatos T.D.
        • et al.
        Effect of rosuvastatin treatment on plasma visfatin levels in patients with primary hyperlipidemia.
        Eur J Pharmacol. 2008; 578: 249-252
        • Filippatos T.D.
        • Mikhailidis D.P.
        Statins and heart failure.
        Angiology. 2008; 59: 58S-61S
        • Kostapanos M.S.
        • Milionis H.J.
        • Filippatos T.D.
        • et al.
        Dose-dependent effect of rosuvastatin treatment on HDL-subfraction phenotype in patients with primary hyperlipidemia.
        J Cardiovasc Pharmacol Ther. 2009; 14: 5-13
        • Milionis H.J.
        • Gazi I.F.
        • Filippatos T.D.
        • et al.
        Starting with rosuvastatin in primary hyperlipidemia–Is there more than lipid lowering?.
        Angiology. 2005; 56: 585-592
        • Milionis H.J.
        • Rizos E.
        • Kostapanos M.
        • et al.
        Treating to target patients with primary hyperlipidaemia: comparison of the effects of ATOrvastatin and ROSuvastatin (the ATOROS study).
        Curr Med Res Opin. 2006; 22: 1123-1131
        • Kiortsis D.N.
        • Filippatos T.D.
        • Mikhailidis D.P.
        • et al.
        Statin-associated adverse effects beyond muscle and liver toxicity.
        Atherosclerosis. 2007; 195: 7-16
        • Mabuchi H.
        • Kamon N.
        • Fujita H.
        • et al.
        Effects of CS-514 on serum lipoprotein lipid and apolipoprotein levels in patients with familial hypercholesterolemia.
        Metabolism. 1987; 36: 475-479
        • Yoshino G.
        • Kazumi T.
        • Iwai M.
        • et al.
        Effects of CS-514 on plasma lipids and lipoprotein composition in hypercholesterolemic subjects.
        Atherosclerosis. 1988; 71: 95-101
        • Plat J.
        • Brufau G.
        • Dallinga-Thie G.M.
        • et al.
        A plant stanol yogurt drink alone or combined with a low-dose statin lowers serum triacylglycerol and non-HDL cholesterol in metabolic syndrome patients.
        J Nutr. 2009; 139: 1143-1149
        • Wakatsuki A.
        • Okatani Y.
        • Ikenoue N.
        Effects of combination therapy with estrogen plus simvastatin on lipoprotein metabolism in postmenopausal women with type IIa hypercholesterolemia.
        Atherosclerosis. 2000; 150: 103-111
        • Le N.A.
        • Innis-Whitehouse W.
        • Li X.
        • et al.
        Lipid and apolipoprotein levels and distribution in patients with hypertriglyceridemia: effect of triglyceride reductions with atorvastatin.
        Metabolism. 2000; 49: 167-177
        • Hu M.
        • Lui S.S.
        • Mak V.W.
        • et al.
        Pharmacogenetic analysis of lipid responses to rosuvastatin in Chinese patients.
        Pharmacogenet Genomics. 2010; 20: 634-637
        • Zhang B.
        • Matsunaga A.
        • Rainwater D.L.
        • et al.
        Effects of rosuvastatin on electronegative LDL as characterized by capillary isotachophoresis: the ROSARY Study.
        J Lipid Res. 2009; 50: 1832-1841
        • Filippatos T.
        • Milionis H.J.
        Treatment of hyperlipidaemia with fenofibrate and related fibrates.
        Expert Opin Investig Drugs. 2008; 17: 1599-1614
        • Filippatos T.D.
        • Elisaf M.S.
        Fenofibrate plus simvastatin (fixed-dose combination) for the treatment of dyslipidaemia.
        Expert Opin Pharmacother. 2011; 12: 1945-1958
        • Agouridis A.P.
        • Filippatos T.D.
        • Derdemezis C.S.
        • et al.
        Combination of fenofibrate with non-statin drug regimens.
        Curr Pharm Des. 2010; 16: 3401-3416
        • Tsimihodimos V.
        • Liberopoulos E.
        • Elisaf M.
        Pleiotropic effects of fenofibrate.
        Curr Pharm Des. 2009; 15: 517-528
        • Filippatos T.D.
        • Kiortsis D.N.
        • Liberopoulos E.N.
        • et al.
        Effect of orlistat, micronised fenofibrate and their combination on metabolic parameters in overweight and obese patients with the metabolic syndrome: the FenOrli study.
        Curr Med Res Opin. 2005; 21: 1997-2006
        • Filippatos T.D.
        • Gazi I.F.
        • Liberopoulos E.N.
        • et al.
        The effect of orlistat and fenofibrate, alone or in combination, on small dense LDL and lipoprotein-associated phospholipase A2 in obese patients with metabolic syndrome.
        Atherosclerosis. 2007; 193: 428-437
        • Florentin M.
        • Liberopoulos E.N.
        • Filippatos T.D.
        • et al.
        Effect of rimonabant, micronised fenofibrate and their combination on cardiometabolic risk factors in overweight/obese patients: a pilot study.
        Expert Opin Pharmacother. 2008; 9: 2741-2750
        • Filippatos T.D.
        • Liberopoulos E.N.
        • Kostapanos M.
        • et al.
        The effects of orlistat and fenofibrate, alone or in combination, on high-density lipoprotein subfractions and pre-beta1-HDL levels in obese patients with metabolic syndrome.
        Diabetes Obes Metab. 2008; 10: 476-483
        • Tsimihodimos V.
        • Miltiadous G.
        • Daskalopoulou S.S.
        • et al.
        Fenofibrate: metabolic and pleiotropic effects.
        Curr Vasc Pharmacol. 2005; 3: 87-98
        • Rosenson R.S.
        Fenofibrate reduces lipoprotein associated phospholipase A2 mass and oxidative lipids in hypertriglyceridemic subjects with the metabolic syndrome.
        Am Heart J. 2008; 155: e499-416
        • Chan D.C.
        • Watts G.F.
        • Ooi E.M.
        • et al.
        Atorvastatin and fenofibrate have comparable effects on VLDL-apolipoprotein C-III kinetics in men with the metabolic syndrome.
        Arterioscler Thromb Vasc Biol. 2008; 28: 1831-1837
        • Rosenson R.S.
        Effect of fenofibrate on adiponectin and inflammatory biomarkers in metabolic syndrome patients.
        Obesity (Silver Spring). 2009; 17: 504-509
        • Belfort R.
        • Berria R.
        • Cornell J.
        • et al.
        Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome.
        J Clin Endocrinol Metab. 2010; 95: 829-836
        • Tribble D.L.
        • Farnier M.
        • Macdonell G.
        • et al.
        Effects of fenofibrate and ezetimibe, both as monotherapy and in coadministration, on cholesterol mass within lipoprotein subfractions and low-density lipoprotein peak particle size in patients with mixed hyperlipidemia.
        Metabolism. 2008; 57: 796-801
        • Agouridis A.P.
        • Tsimihodimos V.
        • Filippatos T.D.
        • et al.
        The effects of rosuvastatin alone or in combination with fenofibrate or omega 3 fatty acids on inflammation and oxidative stress in patients with mixed dyslipidemia.
        Expert Opin Pharmacother. 2011; 12: 2605-2611
        • Fruchart J.C.
        • Davignon J.
        • Bard J.M.
        • et al.
        Effect of fenofibrate treatment on type III hyperlipoproteinemia.
        Am J Med. 1987; 83: 71-74
        • Malmendier C.L.
        • Lontie J.F.
        • Delcroix C.
        • et al.
        Apolipoproteins C-II and C-III metabolism in hypertriglyceridemic patients. Effect of a drastic triglyceride reduction by combined diet restriction and fenofibrate administration.
        Atherosclerosis. 1989; 77: 139-149
        • Filippatos T.D.
        • Tsimihodimos V.
        • Kostapanos M.
        • et al.
        Analysis of 6-month effect of orlistat administration alone or with combination with fenofibrate, on triglyceride-rich lipoprotein metabolism in overweight and obese patients with metabolic syndrome.
        J Clin Lip. 2008; 2: 279-284
        • Vega G.L.
        • Ma P.T.
        • Cater N.B.
        • et al.
        Effects of adding fenofibrate (200 mg/day) to simvastatin (10 mg/day) in patients with combined hyperlipidemia and metabolic syndrome.
        Am J Cardiol. 2003; 91: 956-960
        • Telford D.E.
        • Sutherland B.G.
        • Edwards J.Y.
        • et al.
        The molecular mechanisms underlying the reduction of LDL apoB-100 by ezetimibe plus simvastatin.
        J Lipid Res. 2007; 48: 699-708
        • Muraoka T.
        • Aoki K.
        • Iwasaki T.
        • et al.
        Ezetimibe decreases SREBP-1c expression in liver and reverses hepatic insulin resistance in mice fed a high-fat diet.
        Metabolism. 2011; 60: 617-628
        • Kalogirou M.
        • Tsimihodimos V.
        • Elisaf M.
        Pleiotropic effects of ezetimibe: do they really exist?.
        Eur J Pharmacol. 2010; 633: 62-70
        • Agouridis A.P.
        • Filippatos T.D.
        • Tsimihodimos V.
        • et al.
        Combinations of ezetimibe with nonstatin drug regimens affecting lipid metabolism.
        Expert Rev Cardiovasc Ther. 2011; 9: 355-366
        • Kalogirou M.
        • Tsimihodimos V.
        • Gazi I.
        • et al.
        Effect of ezetimibe monotherapy on the concentration of lipoprotein subfractions in patients with primary dyslipidaemia.
        Curr Med Res Opin. 2007; 23: 1169-1176
        • Nakou E.S.
        • Filippatos T.D.
        • Georgoula M.
        • et al.
        The effect of orlistat and ezetimibe, alone or in combination, on serum LDL and small dense LDL cholesterol levels in overweight and obese patients with hypercholesterolaemia.
        Curr Med Res Opin. 2008; 24: 1919-1929
        • Nakou E.S.
        • Filippatos T.D.
        • Kiortsis D.N.
        • et al.
        The effects of ezetimibe and orlistat, alone or in combination, on high-density lipoprotein (HDL) subclasses and HDL-associated enzyme activities in overweight and obese patients with hyperlipidaemia.
        Expert Opin Pharmacother. 2008; 9: 3151-3158
        • Derdemezis C.
        • Filippatos T.
        • Tselepis A.
        • et al.
        Effects of ezetimibe, either alone or in combination with atorvastatin, on serum visfatin levels: a pilot study.
        Expert Opin Pharmacother. 2008; 9: 1829-1837
        • Filippatos T.D.
        • Elisaf M.S.
        Role of ezetimibe in non-alcoholic fatty liver disease.
        World J Hepatol. 2011; 3: 265-267
        • Masuda D.
        • Nakagawa-Toyama Y.
        • Nakatani K.
        • et al.
        Ezetimibe improves postprandial hyperlipidaemia in patients with type IIb hyperlipidaemia.
        Eur J Clin Invest. 2009; 39: 689-698
        • Nakou E.S.
        • Filippatos T.D.
        • Agouridis A.P.
        • et al.
        The effects of ezetimibe and/or orlistat on triglyceride-rich lipoprotein metabolism in obese hypercholesterolemic patients.
        Lipids. 2010; 45: 445-450
        • Filippatos T.D.
        • Mikhailidis D.P.
        Lipid-lowering drugs acting at the level of the gastrointestinal tract.
        Curr Pharm Des. 2009; 15: 490-516
        • Kiortsis D.N.
        • Filippatos T.D.
        • Elisaf M.S.
        The effects of orlistat on metabolic parameters and other cardiovascular risk factors.
        Diabetes Metab. 2005; 31: 15-22
        • Kiortsis D.N.
        • Tsouli S.
        • Filippatos T.D.
        • et al.
        Effects of sibutramine and orlistat on mood in obese and overweight subjects: a randomised study.
        Nutr Metab Cardiovasc Dis. 2008; 18: 207-210
        • Filippatos T.
        • Derdemezis C.
        • Elisaf M.
        Effects of orlistat, alone or combined with hypolipidemic drugs, on cardiovascular risk factors.
        Clinical Lipidology. 2009; 4: 331-341
        • Filippatos T.D.
        • Elisaf M.S.
        Combination drug treatment in patients with non-alcoholic fatty liver disease.
        World J Hepatol. 2010; 2: 139-142
        • Filippatos T.D.
        • Elisaf M.S.
        Combination drug treatment in obese diabetic patients.
        World J Diabetes. 2010; 1: 8-11
        • Kei A.
        • Liberopoulos E.N.
        • Elisaf M.S.
        What restricts the clinical use of nicotinic acid?.
        Curr Vasc Pharmacol. 2011; 9: 521-530
        • Wahlberg G.
        • Holmquist L.
        • Walldius G.
        • et al.
        Effects of nicotinic acid on concentrations of serum apolipoproteins B, C-I, C-II, C-III and E in hyperlipidemic patients.
        Acta Med Scand. 1988; 224: 319-327
        • Kado S.
        • Murakami T.
        • Aoki A.
        • et al.
        Effect of acarbose on postprandial lipid metabolism in type 2 diabetes mellitus.
        Diabetes Res Clin Pract. 1998; 41: 49-55
        • Nicolay A.
        • Lombard E.
        • Arlotto E.
        • et al.
        Evaluation of new apolipoprotein C-II and apolipoprotein C-III automatized immunoturbidimetric kits.
        Clin Biochem. 2006; 39: 935-941
        • Rifai N.
        • Silverman L.M.
        Immunoturbidimetric techniques for quantifying apolipoproteins CII and CIII.
        Clin Chem. 1986; 32: 1969-1972
        • Bren N.D.
        • Rastogi A.
        • Kottke B.A.
        Quantification of human plasma apolipoproteins C-I, C-II, and C-III by radioimmunoassays.
        Mayo Clin Proc. 1993; 68: 657-664
        • Holmberg R.
        • Refai E.
        • Hoog A.
        • et al.
        Lowering apolipoprotein CIII delays onset of type 1 diabetes.
        Proc Natl Acad Sci U S A. 2011; 108: 10685-10689
        • Cote M.
        • Provost P.R.
        • Gerard-Hudon M.C.
        • et al.
        Apolipoprotein C-II and lipoprotein lipase show a temporal and geographic correlation with surfactant lipid synthesis in preparation for birth.
        BMC Dev Biol. 2010; 10: 111
        • Tavridou A.
        • Ragia G.
        • Manolopoulos V.G.
        Emerging targets for the treatment of dyslipidemia.
        Curr Med Chem. 2011; 18: 909-922
        • Crooke R.M.
        Antisense oligonucleotides as therapeutics for hyperlipidaemias.
        Expert Opin Biol Ther. 2005; 5: 907-917