Advertisement
Review| Volume 62, ISSUE 1, P12-20, January 2013

Download started.

Ok

MicroRNA regulation of lipid metabolism

      Abstract

      MicroRNAs are structural components of an epigenetic mechanism of post-transcriptional regulation of messenger RNA translation. Recently, there is significant interest in the application of microRNA as a blood-based biomarker of underlying physiologic conditions, and the therapeutic administration of microRNA inhibitors and mimics. The purpose of this review is to describe the current body of knowledge on microRNA regulation of genes involved in lipid metabolism, and to introduce the role of microRNA in development and progression of atherosclerosis.

      Abbreviations:

      miR (microRNA), mRNA (messenger RNA), RNA (ribosomal nucleic acid), pri-miR (primary microRNA), DGCR8 (DiGeorge syndrome critical region gene 8), RISC (ribonucleoprotein miR-induced silencing complex), LDL-c (low density lipoprotein cholesterol), HDL-c (high density lipoprotein cholesterol), SREBF (Sterol Regulatory Binding Element Factor), ABCA1 (Adenosine Triphosphate Binding Cassette Transporter)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Esau C.
        • Davis S.
        • Murray S.F.
        • et al.
        miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.
        Cell Metab. 2006; 3: 87-98
        • Rayner K.J.
        • Suarez Y.
        • Davalos A.
        • et al.
        MiR-33 contributes to the regulation of cholesterol homeostasis.
        Science. 2010; 328: 1570-1573
        • Lee R.C.
        • Feinbaum R.L.
        • Ambros V.
        The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.
        Cell. 1993; 75: 843-854
        • Lagos-Quintana M.
        • Rauhut R.
        • Lendeckel W.
        • et al.
        Identification of novel genes coding for small expressed RNAs.
        Science. 2001; 294: 853-858
        • Lau N.C.
        • Lim L.P.
        • Weinstein E.G.
        • et al.
        An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.
        Science. 2001; 294: 858-862
        • Lee R.C.
        • Ambros V.
        An extensive class of small RNAs in Caenorhabditis elegans.
        Science. 2001; 294: 862-864
        • Xu P.
        • Vernooy S.Y.
        • Guo M.
        • et al.
        The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism.
        Curr Biol. 2003; 13: 790-795
        • Rodriguez A.
        • Griffiths-Jones S.
        • Ashurst J.L.
        • et al.
        Identification of mammalian microRNA host genes and transcription units.
        Genome Res. 2004; 14: 1902-1910
        • Lee Y.
        • Ahn C.
        • Han J.
        • et al.
        The nuclear RNase III Drosha initiates microRNA processing.
        Nature. 2003; 425: 415-419
        • Lee Y.
        • Jeon K.
        • Lee J.T.
        • et al.
        MicroRNA maturation: stepwise processing and subcellular localization.
        EMBO J. 2002; 21: 4663-4670
        • Bernstein E.
        • Caudy A.A.
        • Hammond S.M.
        • et al.
        Role for a bidentate ribonuclease in the initiation step of RNA interference.
        Nature. 2001; 409: 363-366
        • Yeom K.H.
        • Lee Y.
        • Han J.
        • et al.
        Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.
        Nucleic Acids Res. 2006; 34: 4622-4629
        • Matranga C.
        • Tomari Y.
        • Shin C.
        • et al.
        Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.
        Cell. 2005; 123: 607-620
        • Han J.
        • Lee Y.
        • Yeom K.H.
        • et al.
        The Drosha-DGCR8 complex in primary microRNA processing.
        Genes Dev. 2004; 18: 3016-3027
        • Liu J.
        • Carmell M.A.
        • Rivas F.V.
        • et al.
        Argonaute2 is the catalytic engine of mammalian RNAi.
        Science. 2004; 305: 1437-1441
        • Hammond S.M.
        • Bernstein E.
        • Beach D.
        • et al.
        An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells.
        Nature. 2000; 404: 293-296
        • Liu J.
        • Valencia-Sanchez M.A.
        • Hannon G.J.
        • et al.
        MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies.
        Nat Cell Biol. 2005; 7: 719-723
        • Lai E.C.
        Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation.
        Nat Genet. 2002; 30: 363-364
        • Saxena S.
        • Jonsson Z.O.
        • Dutta A.
        Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells.
        J Biol Chem. 2003; 278: 44312-44319
        • Griffiths-Jones S.
        • Grocock R.J.
        • van Dongen S.
        miRBase: microRNA sequences, targets and gene nomenclature.
        Nucleic Acids Res. 2006; 34: D140-D144
        • Poy M.N.
        • Spranger M.
        • Stoffel M.
        microRNAs and the regulation of glucose and lipid metabolism.
        Diabetes Obes Metab. 2007; 9: 67-73
        • Wilfred B.R.
        • Wang W.X.
        • Nelson P.T.
        Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways.
        Mol Genet Metab. 2007; 91: 209-217
        • Teleman A.A.
        • Maitra S.
        • Cohen S.M.
        Drosophila lacking microRNA miR-278 are defective in energy homeostasis.
        Genes Dev. 2006; 20: 417-422
        • Lagos-Quintana M.
        • Rauhut R.
        • Yalcin A.
        • et al.
        Identification of tissue-specific microRNAs from mouse.
        Curr Biol. 2002; 12: 735-739
        • Rottiers V.
        • Najafi-Shoushtari S.H.
        • Kristo F.
        • et al.
        MicroRNAs in metabolism and metabolic diseases.
        Cold Spring Harb Symp Quant Biol. 2011;
        • Rayner K.J.
        • Sheedy F.J.
        • Esau C.C.
        • et al.
        Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.
        J Clin Invest. 2011; 121: 2921-2931
        • Davalos A.
        • Goedeke L.
        • Smibert P.
        • et al.
        miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling.
        Proc Natl Acad Sci U S A. 2011; 108: 9232-9237
        • Rayner K.J.
        • Esau C.C.
        • Hussain F.N.
        • et al.
        Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides.
        Nature. 2011; 478: 404-407
        • Pirola L.
        • Johnston A.M.
        • Van Obberghen E.
        Modulation of insulin action.
        Diabetologia. 2004; 47: 170-184
        • Reaven G.M.
        Banting lecture 1988. Role of insulin resistance in human disease.
        Diabetes. 1988; 37: 1595-1607
        • Chang J.
        • Nicolas E.
        • Marks D.
        • et al.
        miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1.
        RNA Biol. 2004; 1: 106-113
        • Song K.H.
        • Li T.
        • Owsley E.
        • et al.
        A putative role of micro RNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes.
        J Lipid Res. 2010; 51: 2223-2233
        • Iliopoulos D.
        • Drosatos K.
        • Hiyama Y.
        • et al.
        MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism.
        J Lipid Res. 2010; 51: 1513-1523
        • Cirera S.
        • Birck M.
        • Busk P.K.
        • et al.
        Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet.
        Comp Med. 2010; 60: 136-141
        • Ramirez C.M.
        • Davalos A.
        • Goedeke L.
        • et al.
        MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1.
        Arterioscler Thromb Vasc Biol. 2011; 31: 2707-2714
        • Kim J.
        • Yoon H.
        • Ramirez C.M.
        miR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression.
        Exp Neurol. 2011;
        • Najafi-Shoushtari S.H.
        MicroRNAs in cardiometabolic disease.
        Curr Atheroscler Rep. 2011; 13: 202-207
        • Cheng Y.
        • Zhang C.
        MicroRNA-21 in cardiovascular disease.
        J Cardiovasc Transl Res. 2010; 3: 251-255
        • Vinciguerra M.
        • Sgroi A.
        • Veyrat-Durebex C.
        • et al.
        Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes.
        Hepatology. 2009; 49: 1176-1184
        • Turchinovich A.
        • Weiz L.
        • Langheinz A.
        • et al.
        Characterization of extracellular circulating microRNA.
        Nucleic Acids Res. 2011; 39: 7223-7233
        • Vaz C.
        • Ahmad H.M.
        • Sharma P.
        • et al.
        Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood.
        BMC Genomics. 2010; 11: 288
        • Chen T.
        • Huang Z.
        • Wang L.
        • et al.
        MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages.
        Cardiovasc Res. 2009; 83: 131-139
        • Ji R.
        • Cheng Y.
        • Yue J.
        • et al.
        MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation.
        Circ Res. 2007; 100: 1579-1588
        • Cheng Y.
        • Liu X.
        • Yang J.
        • et al.
        MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation.
        Circ Res. 2009; 105: 158-166
        • Cordes K.R.
        • Sheehy N.T.
        • White M.P.
        • et al.
        miR-145 and miR-143 regulate smooth muscle cell fate and plasticity.
        Nature. 2009; 460: 705-710
        • Elia L.
        • Quintavalle M.
        • Zhang J.
        • et al.
        The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease.
        Cell Death Differ. 2009; 16: 1590-1598
        • Zhang C.
        MicroRNA-145 in vascular smooth muscle cell biology: a new therapeutic target for vascular disease.
        Cell Cycle. 2009; 8: 3469-3473
        • Liu X.
        • Cheng Y.
        • Zhang S.
        • et al.
        A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia.
        Circ Res. 2009; 104: 476-487
        • Keller A.
        • Leidinger P.
        • Borries A.
        • et al.
        miRNAs in lung cancer — studying complex fingerprints in patient's blood cells by microarray experiments.
        BMC Cancer. 2009; 9: 353
        • Wang J.
        • Chen J.
        • Chang P.
        • et al.
        MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease.
        Cancer Prev Res (Phila Pa). 2009; 2: 807-813
        • Ai J.
        • Zhang R.
        • Li Y.
        • et al.
        Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction.
        Biochem Biophys Res Commun. 2010; 391: 73-77
        • Ji X.
        • Takahashi R.
        • Hiura Y.
        • et al.
        Plasma miR-208 as a biomarker of myocardial injury.
        Clin Chem. 2009; 55: 1944-1949
        • Tan K.S.
        • Armugam A.
        • Sepramaniam S.
        • et al.
        Expression profile of MicroRNAs in young stroke patients.
        PLoS One. 2009; 4: e7689
        • Vasilescu C.
        • Rossi S.
        • Shimizu M.
        • et al.
        MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis.
        PLoS One. 2009; 4: e7405
        • Liu D.Z.
        • Tian Y.
        • Ander B.P.
        • et al.
        Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures.
        J Cereb Blood Flow Metab. 2009; 30: 92-101
        • van Rooij E.
        • Marshall W.S.
        • Olson E.N.
        Toward microRNA-based therapeutics for heart disease: the sense in antisense.
        Circ Res. 2008; 103: 919-928