Advertisement
Basic Science| Volume 62, ISSUE 1, P79-89, January 2013

Download started.

Ok

L-Arginine enhances glucose and lipid metabolism in rat L6 myotubes via the NO/ c-GMP pathway

  • Thais de Castro Barbosa
    Affiliations
    Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil

    Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Search for articles by this author
  • Lake Q. Jiang
    Affiliations
    Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Search for articles by this author
  • Juleen R. Zierath
    Correspondence
    Corresponding author. Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden. Tel.: +46 08 524 87580; fax: +46 08 33 54 36.
    Affiliations
    Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
    Search for articles by this author
  • Maria Tereza Nunes
    Affiliations
    Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
    Search for articles by this author

      Abstract

      Objective

      The amino acid Arginine (Arg) is the main biological precursor of nitric oxide (NO) and has been described to improve insulin sensitivity in diabetes and obesity. We investigated the molecular mechanisms involved in the long-term effects of Arg on glucose and lipid metabolism.

      Materials and Methods

      L6 myotubes were treated with Arg (7 mmol/L) for 6 days. D-Mannitol (7 mmol/L) was used as control; spermine NONOate (10 μmol/L) and L-NAME (100 μmol/L) were used to evaluate the NO/c-GMP pathway role. Basal and insulin-induced (120 nmol/L) glycogen synthesis, glucose uptake and lipid oxidation, c-GMP and nitrite levels, and the intracellular signaling pathways were evaluated.

      Results

      Arg-treatment increased: 1) basal and insulin-stimulated glycogen synthesis; 2) glucose uptake; 3) palmitate oxidation; 4) p-Akt (Ser473), total and plasma membrane GLUT4 content, total and p-AMPK-α and p-ACC (Ser79), p-GSK-3α/β (Ser21/9) and 5) nitrite and c-GMP levels. L-NAME treatment suppressed Arg effects on: 1) nitrite and c-GMP content; 2) glycogen synthesis and glucose uptake; 3) basal and insulin-stimulated p-Akt (Ser473), total and p-AMPK-α and ACC, and nNOS expression.

      Conclusion

      We provide evidence that Arg improves glucose and lipid metabolism in skeletal muscle, in parallel with increased phosphorylation of Akt and AMPK-α. These effects were mediated by the NO/c-GMP pathway. Thus, arginine treatment enhances signal transduction and has a beneficial effect of metabolism in skeletal muscle through direct activation of Akt and AMPK pathways.

      Abbreviations:

      ACC (Acetyl-CoA Carboxylase), Akt (Protein Kinase B), AMPK (AMP-activated Protein Kinase), Arg (L-Arginine), c-GMP (Cyclic-Guanylil Monophosphate), D-Man (D-Mannitol), EDL (Extensor Digitorum Longus Muscle), eNOS (Endothelial Nitric Oxide Synthase), FBS (Fetal Bovine Serum), GAPDH (Glyceraldehydes 3-Phosphate Dehydrogenase), GH (Growth Hormone), GLUT4 (Glucose Transporter Type 4), GSK-3α/β (Glycogen Synthase Kinase alpha and beta), iNOS (Inducible Nitric Oxide Synthase), IRS (Insulin Receptor Substrate), L-NAME (NG-Nitro-L-arginine methyl ester), Lys (L-Lysine), nNOS (Neuronal Nitric Oxide Synthase), NO (Nitric Oxide), NOS (Nitric Oxide Synthase), PI3-K (Phosphatidylinositol 3-Kinase), SNP (Sodium Nitroprusside), SP (Spermine NONOate), α-MEM (Modified Eagle Medium)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Morris Jr., S.M.
        Arginine metabolism: boundaries of our knowledge.
        J Nutr. 2007; 137: 1602S-1609S
        • Wu G.
        Amino acids: metabolism, functions, and nutrition.
        Amino Acids. 2009; 37: 1-17
        • Morris Jr., S.M.
        Arginine: beyond protein.
        Am J Clin Nutr. 2006; 83: 508S-512S
        • Palmer R.M.J.
        • Ashton D.S.
        • Moncada S.
        Vascular endothelial cells synthesize nitric oxide from L-arginine.
        Nature. 1988; 333: 664-666
        • Newsholme P.
        • Homem De Bittencourt P.I.
        • O' Hagan C.
        • De Vito G.
        • Murphy C.
        • Krause M.S.
        Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide.
        Clin Sci (Lond). 2010; 118: 341-349
        • Moncada S.
        • Higgs A.
        The L-arginine–nitric oxide pathway.
        N Engl J Med. 1993; 329: 2002-2012
        • Mori M.
        • Gotoh T.
        Arginine metabolic enzymes, nitric oxide and infection.
        J Nutr. 2004; 134: 2820S-2825S
        • Iyengar R.
        • Stuehr D.J.
        • Marletta M.A.
        Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst.
        Proc Natl Acad Sci USA. 1987; 84: 6369-6373
        • Förstermann U.
        • Closs E.I.
        • Pollock J.S.
        • Nakane M.
        • Schwarz P.
        • Gath I.
        • et al.
        Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions.
        Hypertension. 1994; 23: 1121-1131
        • Arnold W.P.
        • Mittal C.K.
        • Katsuki S.
        • Murad F.
        Nitric oxide activates guanylate cyclase and increases guanosine 3´:5´- cyclic monophosphate levels in various tissue preparations.
        Proc Natl Acad Sci USA. 1997; 74: 3203-3207
        • Pieper G.M.
        • Siebeneich W.
        • Dondlinger L.A.
        Short-term oral administration of L-arginine reverses defective endothelium-dependent relaxation and c-GMP generation in diabetes.
        Eur J Pharmacol. 1996; 17: 317-320
        • Wascher T.C.
        • Graier W.F.
        • Dittrich P.
        • Hussain M.A.
        • Bahadori B.
        • Wallner S.
        • et al.
        Effects of low-dose L-arginine on insulin-mediated vasodilatation and insulin sensitivity.
        Eur J Clin Invest. 1997; 27: 690-695
        • Drexler H.
        • Zeiher A.M.
        • Meinzer K.
        • Just H.
        Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine.
        Lancet. 1991; 338: 1546-1550
        • Creager M.A.
        • Gallagher S.J.
        • Girerd X.J.
        • Coleman S.M.
        • Dzau V.J.
        • Cooke J.P.
        L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans.
        J Clin Invest. 1992; 90: 1248-1253
        • Clarkson P.
        • Adams M.R.
        • Powe A.J.
        • Donald A.E.
        • McCredie R.
        • Robinson J.
        • et al.
        Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults.
        J Clin Invest. 1996; 97: 1989-1994
        • Blum A.
        • Hathaway L.
        • Mincemoyer R.
        • Schenke W.H.
        • Kirby M.
        • Csako G.
        • et al.
        Oral L-arginine in patients with coronary artery disease on medical management.
        Circulation. 2000; 101: 2160-2164
        • Lucotti P.
        • Monti L.
        • Setola E.
        • La Canna G.
        • Castiglioni A.
        • Rossodivita A.
        • et al.
        Oral L-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass.
        Metabolism. 2009; 58: 1270-1276
        • Balon T.W.
        • Nadler J.L.
        Evidence that nitric oxide increases glucose transport in skeletal muscle.
        J Appl Physiol. 1997; 82: 359-363
        • Higaki Y.
        • Hirshman M.F.
        • Fujii N.
        • Goodyear L.J.
        Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle.
        Diabetes. 2001; 50: 241-247
        • Deshmukh A.S.
        • Long Y.C.
        • de Castro Barbosa T.
        • Karlsson H.K.
        • Glund S.
        • Zavadoski W.J.
        • et al.
        Nitric oxide increases cyclic GMP levels, AMP-activated protein kinase (AMPK) alpha1-specific activity and glucose transport in human skeletal muscle.
        Diabetologia. 2010; 53: 1142-1150
        • Al-Khalili L.
        • Chibalin A.V.
        • Kannisto K.
        • Zhang B.B.
        • Permet J.
        • Holman G.D.
        • et al.
        Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content.
        Cell Mol Life Sci. 2003; 60: 991-998
        • Rune A.
        • Salehzadeh F.
        • Szekeres F.
        • Kuhn I.
        • Osler M.E.
        • Al-Khalili L.
        Evidence against a sexual dimorphism in glucose and fatty acid metabolism in skeletal muscle cultures from age-matched men and post-menopausal women.
        Acta Physiol. 2009; 197: 207-215
        • Benziane B.
        • Björnholm M.
        • Lantier L.
        • Viollet B.
        • Zierath J.R.
        • Chibalin A.V.
        AMP-activated protein kinase activator A-769662 is an inhibitor of the Na(+)-K(+)-ATPase.
        Am J Physiol Cell Physiol. 2009; 297: C1554-C1566
        • Chae S.Y.
        • Lee M.
        • Kim S.W.
        • Bae Y.H.
        Protection of insulin secreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin.
        Biomaterials. 2004; 25: 843-850
        • Kurjak M.
        • Koppitz P.
        • Schusdziarra V.
        • Allescher H.D.
        Evidence for a feedback inhibition of NO synthesis in enteric synaptosomes via a nitrosothiol intermediate.
        Am J Physiol Gastrointest Liver Physiol. 1999; 277: G875-G884
        • Alderton W.K.
        • Cooper C.E.
        • Knowles R.G.
        Nitric oxide synthases: structure, function and inhibition.
        Biochem J. 2001; 357: 593-615
        • McKnight J.R.
        • Satterfield M.C.
        • Jobgen W.S.
        • Smith S.B.
        • Spencer T.E.
        • Meininger C.J.
        • et al.
        Beneficial effects of L-Arginine on reducing obesity: potential mechanisms and important implications for human health.
        Amino Acids. 2010; 39: 349-357
        • Jobgen W.
        • Meininger C.J.
        • Jobgen S.C.
        • Li P.
        • Lee M.J.
        • Smith S.B.
        • et al.
        Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats.
        J Nutr. 2009; 139: 230-237
        • Kohli R.
        • Meininger C.J.
        • Haynes T.E.
        • Yan W.
        • Self J.T.
        • Wu G.
        Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats.
        J Nutr. 2004; 134: 600-608
        • Zierath J.R.
        • Krook A.
        • Wallberg-Henriksson H.
        Insulin action and insulin resistance in human skeletal muscle.
        Diabetologia. 2000; 43: 821-835
        • Long Y.C.
        • Zierath J.R.
        AMP-activated protein kinase signaling in metabolic regulation.
        J Clin Invest. 2006; 116: 1776-1783
        • Lira V.A.
        • Soltow Q.A.
        • Long J.H.
        • Betters J.L.
        • Sellman J.E.
        • Criswell D.S.
        Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle.
        Am J Physiol Endocrinol Metab. 2007; 93: 1062-1068
        • Maragos C.M.
        • Morley D.
        • Wink D.A.
        • Dunams T.M.
        • Saavedra J.E.
        • Hoffman A.
        • et al.
        Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide.
        Vasorelaxant effects. J Med Chem. 1991; 34: 3242-3247
        • Henstridge D.C.
        • Drew B.G.
        • Formosa M.F.
        • Natoli A.K.
        • Cameron-Smith D.
        • Duffy S.J.
        • et al.
        The effect of the nitric oxide donor sodium nitroprusside on glucose uptake in human primary skeletal muscle cells.
        Nitric Oxide. 2009; 21: 126-131
        • Lau K.S.
        • Grange R.W.
        • Isotani E.
        • Sarelius I.H.
        • Kamm K.E.
        • Huang P.L.
        • et al.
        nNOS and eNOS modulate c-GMP formation and vascular response in contracting fast-twitch skeletal muscle.
        Physiol Genomic. 2000; 2: 21-27
        • Chen Z.P.
        • McConell G.K.
        • Michell B.J.
        • Snow R.J.
        • Canny B.J.
        • Kemp B.E.
        AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation.
        Am J Physiol Endocrinol Metab. 2000; 279: E1202-E1206
        • de Castro Barbosa T.
        • de Carvalho Nicoletti J.E.
        • Poyares L.L.
        • Bordin S.
        • Machado U.F.
        • Nunes M.T.
        Potential role of growth hormone in impairment of insulin signaling in skeletal muscle, adipose tissue, and liver of rats chronically treated with arginine.
        Endocrinology. 2009; 150: 2080-2086
        • de Castro Barbosa T.
        • Lourenço Poyares L.
        • Fabres Machado U.
        • Nunes M.T.
        Chronic oral administration of arginine induces GH gene expression and insulin resistance.
        Life Sci. 2006; 79: 1444-1449