Advertisement

The role of leptin in regulating bone metabolism

  • Author Footnotes
    1 These authors contributed equally to this work.
    Jagriti Upadhyay
    Correspondence
    Corresponding author at: VA Boston Healthcare System, Division of Endocrinology (9-B), 150S. Huntington Ave., Boston, MA 02130. Tel.: +1 857 364 4233.
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Olivia M. Farr
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
    Search for articles by this author
  • Christos S. Mantzoros
    Affiliations
    Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
Published:October 25, 2014DOI:https://doi.org/10.1016/j.metabol.2014.10.021

      Abstract

      Leptin was initially best known for its role in energy homeostasis and regulation of energy expenditure. In the past few years we have realized that leptin also plays a major role in neuroendocrine regulation and bone metabolism. Here, we review the literature the indirect and direct pathways through which leptin acts to influence bone metabolism and discuss bone abnormalities related to leptin deficiency in both animal and human studies. The clinical utility of leptin in leptin deficient individuals and its potential to improve metabolic bone disease are also discussed. We are beginning to understand the critical role leptin plays in bone metabolism; future randomized studies are needed to fully assess the potential and risk–benefit of leptin’s use in metabolic bone disease particularly in leptin deficient individuals.

      Abbreviations:

      BMI (body mass index), ARC (arcuate nucleus of hypothalamus), NPY (neuropeptide Y), AgRP (agouti-related peptide), POMC (pro-opiomelanocortin), CART (cocaine- and amphetamine-related transcript), LepRb (leptin receptor), JAK2 (janus kinase 2), STAT3 (signal transducer and activator of transcription 3), SHP2 (src homology-2-containing protein tyrosine phosphatase 2), MAPK (mitogen-activated protein kinase), PI3K (phosphatidylinositol 3 kinase), AMPK (adenosine monophosphate-activated protein kinase), mTOR (mammalian target of rapamycin), FoxO1 (forkhead box protein O1), TSH (thyroid-stimulating hormone), FGF23 (fibroblast growth factor 23), VMH (ventromedial hypothalamus), IGF1 (insulin-like growth factor 1), IGF-BP2/3 (insulin-like growth factor binding protein 2/3), GH (growth hormone), ACTH (adrenocorticotropic hormone), HAART (highly active antiretroviral therapy), Akt (protein kinase B), SOCS-3 (suppressor of cytokine signaling 3)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sinha M.K.
        • Sturis J.
        • Ohannesian J.
        • et al.
        Ultradian oscillations of leptin secretion in humans.
        Biochem Biophys Res Commun. 1996; 228: 733-738
        • Maffei M.
        • Halaas J.
        • Ravussin E.
        • et al.
        Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects.
        Nat Med. 1995; 1: 1155-1161
        • Mantzoros C.S.
        • Liolios A.D.
        • Tritos N.A.
        • et al.
        Circulating insulin concentrations, smoking, and alcohol intake are important independent predictors of leptin in young healthy men.
        Obes Res. 1998; 6: 179-186
        • Farooqi I.S.
        • Keogh J.M.
        • Kamath S.
        • et al.
        Partial leptin deficiency and human adiposity.
        Nature. 2001; 414: 34-35
        • Chan J.L.
        • Heist K.
        • DePaoli A.M.
        • et al.
        The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men.
        J Clin Investig. 2003; 111: 1409-1421
        • Shea S.A.
        • Hilton M.F.
        • Orlova C.
        • et al.
        Independent circadian and sleep/wake regulation of adipokines and glucose in humans.
        J Clin Endocrinol Metab. 2005; 90: 2537-2544
        • Broberger C.
        • Johansen J.
        • Johansson C.
        • et al.
        The neuropeptide y/agouti gene-related protein (AgRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice.
        Proc Natl Acad Sci U S A. 1998; 95: 15043-15048
        • Huszar D.
        • Lynch C.A.
        • Fairchild-Huntress V.
        • et al.
        Targeted disruption of the melanocortin-4 receptor results in obesity in mice.
        Cell. 1997; 88: 131-141
        • Cone R.D.
        Anatomy and regulation of the central melanocortin system.
        Nat Neurosci. 2005; 8: 571-578
        • Strobel A.
        • Issad T.
        • Camoin L.
        • et al.
        A leptin missense mutation associated with hypogonadism and morbid obesity.
        Nat Genet. 1998; 18: 213-215
        • Farooqi I.S.
        • Jebb S.A.
        • Langmack G.
        • et al.
        Effects of recombinant leptin therapy in a child with congenital leptin deficiency.
        N Engl J Med. 1999; 341: 879-884
        • Chou S.H.
        • Chamberland J.P.
        • Liu X.
        • et al.
        Leptin is an effective treatment for hypothalamic amenorrhea.
        Proc Natl Acad Sci U S A. 2011; 108: 6585-6590
        • Audi L.
        • Mantzoros C.S.
        • Vidal-Puig A.
        • et al.
        Leptin in relation to resumption of menses in women with anorexia nervosa.
        Mol Psychiatry. 1998; 3: 544-547
        • Tartaglia L.A.
        The leptin receptor.
        J Biol Chem. 1997; 272: 6093-6096
        • Lee G.H.
        • Proenca R.
        • Montez J.M.
        • et al.
        Abnormal splicing of the leptin receptor in diabetic mice.
        Nature. 1996; 379: 632-635
        • Dalamaga M.
        • Chou S.H.
        • Shields K.
        • et al.
        Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives.
        Cell Metab. 2013; 18: 29-42
        • Moon H.S.
        • Huh J.Y.
        • Dincer F.
        • et al.
        Identification, and saturable nature, of signaling pathways induced by metreleptin in humans: comparative evaluation of in vivo, ex vivo and in vitro administration.
        Diabetes. 2014;
        • Farooqi I.S.
        • Matarese G.
        • Lord G.M.
        • et al.
        Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency.
        J Clin Invest. 2002; 110: 1093-1103
        • Ozata M.
        • Ozdemir I.C.
        • Licinio J.
        Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects.
        J Clin Endocrinol Metab. 1999; 84: 3686-3695
        • Aronis K.N.
        • Kilim H.
        • Chamberland J.P.
        • et al.
        Preadipocyte factor-1 levels are higher in women with hypothalamic amenorrhea and are associated with bone mineral content and bone mineral density through a mechanism independent of leptin.
        J Clin Endocrinol Metab. 2011; 96: E1634-E1639
        • Frank S.
        • Heni M.
        • Moss A.
        • et al.
        Long-term stabilization effects of leptin on brain functions in a leptin-deficient patient.
        PLoS One. 2013; 8: e65893
        • Frank S.
        • Heni M.
        • Moss A.
        • et al.
        Leptin therapy in a congenital leptin-deficient patient leads to acute and long-term changes in homeostatic, reward, and food-related brain areas.
        J Clin Endocrinol Metab. 2011; 96: E1283-E1287
        • Matarese G.
        • La Rocca C.
        • Moon H.S.
        • et al.
        Selective capacity of metreleptin administration to reconstitute CD4+ T-cell number in females with acquired hypoleptinemia.
        Proc Natl Acad Sci U S A. 2013; 110: E818-E827
        • Gibson W.T.
        • Farooqi I.S.
        • Moreau M.
        • et al.
        Congenital leptin deficiency due to homozygosity for the delta133g mutation: report of another case and evaluation of response to four years of leptin therapy.
        J Clin Endocrinol Metab. 2004; 89: 4821-4826
        • Chou S.H.
        • Mantzoros C.
        20 years of leptin: role of leptin in human reproductive disorders.
        J Endocrinol. 2014; 223: T49-T62
        • Wolfe B.E.
        • Jimerson D.C.
        • Orlova C.
        • et al.
        Effect of dieting on plasma leptin, soluble leptin receptor, adiponectin and resistin levels in healthy volunteers.
        Clin Endocrinol (Oxf). 2004; 61: 332-338
        • Mantzoros C.S.
        • Flier J.S.
        • Rogol A.D.
        A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty.
        J Clin Endocrinol Metab. 1997; 82: 1066-1070
        • Welt C.K.
        • Chan J.L.
        • Bullen J.
        • et al.
        Recombinant human leptin in women with hypothalamic amenorrhea.
        N Engl J Med. 2004; 351: 987-997
        • Licinio J.
        • Caglayan S.
        • Ozata M.
        • et al.
        Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults.
        Proc Natl Acad Sci U S A. 2004; 101: 4531-4536
        • Licinio J.
        • Mantzoros C.
        • Negrao A.B.
        • et al.
        Human leptin levels are pulsatile and inversely related to pituitary–adrenal function.
        Nat Med. 1997; 3: 575-579
        • Aschbacher K.
        • Rodriguez-Fernandez M.
        • van Wietmarschen H.
        • et al.
        The hypothalamic–pituitary–adrenal-leptin axis and metabolic health: a systems approach to resilience, robustness and control.
        Interface Focus. 2014; 4: 20140020
        • Li Z.P.
        • Zhang M.
        • Gao J.
        • et al.
        Study of the correlation between growth hormone deficiency and serum leptin, adiponectin, and visfatin levels in adults.
        Genet Mol Res. 2014; 13: 4050-4056
        • Bernini G.P.
        • Argenio G.F.
        • Vivaldi M.S.
        • et al.
        Impaired growth hormone response to insulin-induced hypoglycaemia in obese patients: restoration blocked by ritanserin after fenfluramine administration.
        Clin Endocrinol (Oxf). 1990; 32: 453-459
        • Chan J.L.
        • Mietus J.E.
        • Raciti P.M.
        • et al.
        Short-term fasting-induced autonomic activation and changes in catecholamine levels are not mediated by changes in leptin levels in healthy humans.
        Clin Endocrinol (Oxf). 2007; 66: 49-57
        • Prior L.J.
        • Davern P.J.
        • Burke S.L.
        • et al.
        Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.
        Hypertension. 2014; 63: 338-345
        • Yau S.W.
        • Henry B.A.
        • Russo V.C.
        • et al.
        Leptin enhances insulin sensitivity by direct and sympathetic nervous system regulation of muscle IGFBP-2 expression: evidence from nonrodent models.
        Endocrinology. 2014; 155: 2133-2143
        • Takeda S.
        • Elefteriou F.
        • Levasseur R.
        • et al.
        Leptin regulates bone formation via the sympathetic nervous system.
        Cell. 2002; 111: 305-317
        • Rosenbaum M.
        • Leibel R.L.
        20 years of leptin: role of leptin in energy homeostasis in humans.
        J Endocrinol. 2014; 223: T83-T96
        • Driessler F.
        • Baldock P.A.
        Hypothalamic regulation of bone.
        J Mol Endocrinol. 2010; 45: 175-181
        • Tsuji K.
        • Maeda T.
        • Kawane T.
        • et al.
        Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin d3 synthesis in leptin-deficient mice.
        J Bone Miner Res. 2010; 25: 1711-1723
        • Ferron M.
        • Lacombe J.
        Regulation of energy metabolism by the skeleton: osteocalcin and beyond.
        Arch Biochem Biophys. 2014; 561c: 137-146
        • Laharrague P.
        • Larrouy D.
        • Fontanilles A.M.
        • et al.
        High expression of leptin by human bone marrow adipocytes in primary culture.
        FASEB J. 1998; 12: 747-752
        • Turner R.T.
        • Kalra S.P.
        • Wong C.P.
        • et al.
        Peripheral leptin regulates bone formation.
        J Bone Miner Res. 2013; 28: 22-34
        • Ducy P.
        • Amling M.
        • Takeda S.
        • et al.
        Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass.
        Cell. 2000; 100: 197-207
        • Yadav V.K.
        • Oury F.
        • Suda N.
        • et al.
        A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure.
        Cell. 2009; 138: 976-989
        • Yadav V.K.
        • Ryu J.H.
        • Suda N.
        • et al.
        Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum.
        Cell. 2008; 135: 825-837
      1. Khan SM, Hamnvik OP, Brinkoetter M, et al. Leptin as a modulator of neuroendocrine function in humans. Yonsei Med J 2012;53(4): 671–679.

        • Foo J.P.
        • Hamnvik O.P.
        • Mantzoros C.S.
        Optimizing bone health in anorexia nervosa and hypothalamic amenorrhea: new trials and tribulations.
        Metab Clin Exp. 2012; 61: 899-905
        • Yu W.H.
        • Kimura M.
        • Walczewska A.
        • et al.
        Role of leptin in hypothalamic–pituitary function.
        Proc Natl Acad Sci U S A. 1997; 94: 1023-1028
        • Robinson J.A.
        • Waters K.M.
        • Turner R.T.
        • et al.
        Direct action of naturally occurring estrogen metabolites on human osteoblastic cells.
        J Bone Miner Res. 2000; 15: 499-506
        • Delaveyne-Bitbol R.
        • Garabedian M.
        In vitro responses to 17beta-estradiol throughout pubertal maturation in female human bone cells.
        J Bone Miner Res. 1999; 14: 376-385
        • Cauley J.A.
        • LaCroix A.Z.
        • Robbins J.A.
        • et al.
        Baseline serum estradiol and fracture reduction during treatment with hormone therapy: the Women's Health Initiative randomized trial.
        Osteoporos Int. 2010; 21: 167-177
        • Bagger Y.Z.
        • Tanko L.B.
        • Alexandersen P.
        • et al.
        Two to three years of hormone replacement treatment in healthy women have long-term preventive effects on bone mass and osteoporotic fractures: the PERF study.
        Bone. 2004; 34: 728-735
        • Bolton J.G.
        • Patel S.
        • Lacey J.H.
        • et al.
        A prospective study of changes in bone turnover and bone density associated with regaining weight in women with anorexia nervosa.
        Osteoporos Int. 2005; 16: 1955-1962
        • Mika C.
        • Holtkamp K.
        • Heer M.
        • et al.
        A 2-year prospective study of bone metabolism and bone mineral density in adolescents with anorexia nervosa.
        J Neural Transm. 2007; 114: 1611-1618
        • Kiriike N.
        • Iketani T.
        • Nakanishi S.
        • et al.
        Reduced bone density and major hormones regulating calcium metabolism in anorexia nervosa.
        Acta Psychiatr Scand. 1992; 86: 358-363
        • Pralong F.P.
        • Roduit R.
        • Waeber G.
        • et al.
        Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland.
        Endocrinology. 1998; 139: 4264-4268
        • Misra M.
        • Miller K.K.
        • Almazan C.
        • et al.
        Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism.
        J Clin Endocrinol Metab. 2004; 89: 4972-4980
        • Tsunashima Y.
        • Kondo A.
        • Matsuda T.
        • et al.
        Hydrocortisone inhibits cellular proliferation by downregulating hepatocyte growth factor synthesis in human osteoblasts.
        Biol Pharm Bull. 2011; 34: 700-703
        • Ventura A.
        • Brunetti G.
        • Colucci S.
        • et al.
        Glucocorticoid-induced osteoporosis in children with 21-hydroxylase deficiency.
        Biomed Res Int. 2013; 2013: 250462
        • Grinspoon S.
        • Miller K.
        • Coyle C.
        • et al.
        Severity of osteopenia in estrogen-deficient women with anorexia nervosa and hypothalamic amenorrhea.
        J Clin Endocrinol Metab. 1999; 84: 2049-2055
        • Feresin R.G.
        • Johnson S.A.
        • Elam M.L.
        • et al.
        Effects of obesity on bone mass and quality in ovariectomized female zucker rats.
        . 2014; 2014: 690123
        • Caffarelli C.
        • Alessi C.
        • Nuti R.
        • et al.
        Divergent effects of obesity on fragility fractures.
        Clin Interv Aging. 2014; 9: 1629-1636
        • van der Kroon P.H.
        • Boldewijn H.
        • Langeveld-Soeter N.
        Congenital hypothyroidism in latent obese (ob/ob) mice.
        Int J Obes. 1982; 6: 83-90
        • Sanchez V.C.
        • Goldstein J.
        • Stuart R.C.
        • et al.
        Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone.
        J Clin Invest. 2004; 114: 357-369
        • Montagnani A.
        Bone anabolics in osteoporosis: actuality and perspectives.
        World J Orthop. 2014; 5: 247-254
        • Hodsman A.B.
        • Bauer D.C.
        • Dempster D.W.
        • et al.
        Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use.
        Endocr Rev. 2005; 26: 688-703
        • Foo J.P.
        • Polyzos S.A.
        • Anastasilakis A.D.
        • et al.
        The effect of leptin replacement on parathyroid hormone, rankl-osteoprotegerin axis and wnt inhibitors in young women with hypothalamic amenorrhea.
        J Clin Endocrinol Metab. 2014; : jc20142491
        • Chan J.L.
        • Williams C.J.
        • Raciti P.
        • et al.
        Leptin does not mediate short-term fasting-induced changes in growth hormone pulsatility but increases igf-i in leptin deficiency states.
        J Clin Endocrinol Metab. 2008; 93: 2819-2827
        • Ohlsson C.
        • Bengtsson B.A.
        • Isaksson O.G.
        • et al.
        Growth hormone and bone.
        Endocr Rev. 1998; 19: 55-79
        • Swolin D.
        • Brantsing C.
        • Matejka G.
        • et al.
        Cortisol decreases igf-i mrna levels in human osteoblast-like cells.
        J Endocrinol. 1996; 149: 397-403
        • McCarthy T.L.
        • Centrella M.
        • Canalis E.
        Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor i in osteoblast-enriched cultures from fetal rat bone.
        Endocrinology. 1989; 124: 1247-1253
        • McCarthy T.L.
        • Centrella M.
        • Canalis E.
        Cortisol inhibits the synthesis of insulin-like growth factor-I in skeletal cells.
        Endocrinology. 1990; 126: 1569-1575
        • McCarthy T.L.
        • Centrella M.
        • Raisz L.G.
        • et al.
        Prostaglandin e2 stimulates insulin-like growth factor I synthesis in osteoblast-enriched cultures from fetal rat bone.
        Endocrinology. 1991; 128: 2895-2900
        • Ernst M.
        • Heath J.K.
        • Rodan G.A.
        Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones.
        Endocrinology. 1989; 125: 825-833
        • Ernst M.
        • Rodan G.A.
        Estradiol regulation of insulin-like growth factor-I expression in osteoblastic cells: evidence for transcriptional control.
        Mol Endocrinol. 1991; 5: 1081-1089
        • Turner R.T.
        • Philbrick K.A.
        • Wong C.P.
        • et al.
        Morbid obesity attenuates the skeletal abnormalities associated with leptin deficiency in mice.
        J Endocrinol. 2014; 223: M1-M15
        • Hamrick M.W.
        • Pennington C.
        • Newton D.
        • et al.
        Leptin deficiency produces contrasting phenotypes in bones of the limb and spine.
        Bone. 2004; 34: 376-383
        • Bartell S.M.
        • Rayalam S.
        • Ambati S.
        • et al.
        Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice.
        J Bone Miner Res. 2011; 26: 1710-1720
        • Cornish J.
        • Callon K.E.
        • Bava U.
        • et al.
        Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo.
        J Endocrinol. 2002; 175: 405-415
        • Khan S.N.
        • DuRaine G.
        • Virk S.S.
        • et al.
        The temporal role of leptin within fracture healing and the effect of local application of recombinant leptin on fracture healing.
        J Orthop Trauma. 2013; 27: 656-662
        • Grinspoon S.
        • Gulick T.
        • Askari H.
        • et al.
        Serum leptin levels in women with anorexia nervosa.
        J Clin Endocrinol Metab. 1996; 81: 3861-3863
        • Galusca B.
        • Zouch M.
        • Germain N.
        • et al.
        Constitutional thinness: unusual human phenotype of low bone quality.
        J Clin Endocrinol Metab. 2008; 93: 110-117
        • Albala C.
        • Yanez M.
        • Devoto E.
        • et al.
        Obesity as a protective factor for postmenopausal osteoporosis.
        Int J Obes Relat Metab Disord. 1996; 20: 1027-1032
        • Cruz-Jentoft A.J.
        • Baeyens J.P.
        • Bauer J.M.
        • et al.
        Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People.
        Age Ageing. 2010; 39: 412-423
        • Grinspoon S.
        • Thomas E.
        • Pitts S.
        • et al.
        Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa.
        Ann Intern Med. 2000; 133: 790-794
        • Lawson E.A.
        • Miller K.K.
        • Bredella M.A.
        • et al.
        Hormone predictors of abnormal bone microarchitecture in women with anorexia nervosa.
        Bone. 2010; 46: 458-463
        • De Laet C.
        • Kanis J.A.
        • Oden A.
        • et al.
        Body mass index as a predictor of fracture risk: a meta-analysis.
        Osteoporos Int. 2005; 16: 1330-1338
        • Shin D.
        • Kim S.
        • Kim K.H.
        • et al.
        Association between insulin resistance and bone mass in men.
        J Clin Endocrinol Metab. 2014; 99: 988-995
        • Choi Y.J.
        • Kim D.J.
        • Lee Y.
        • et al.
        Insulin is inversely associated with bone mass, especially in the insulin-resistant population: the Korea and US National Health and Nutrition Examination Surveys.
        J Clin Endocrinol Metab. 2014; 99: 1433-1441
        • Hong X.
        • Arguelles L.M.
        • Liu X.
        • et al.
        Percent fat mass is inversely associated with bone mass and hip geometry in rural chinese adolescents.
        J Bone Miner Res. 2010; 25: 1544-1554
        • Goulding A.
        • Taylor R.W.
        • Jones I.E.
        • et al.
        Overweight and obese children have low bone mass and area for their weight.
        Int J Obes Relat Metab Disord. 2000; 24: 627-632
        • Pollock N.K.
        • Laing E.M.
        • Baile C.A.
        • et al.
        Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females.
        Am J Clin Nutr. 2007; 86: 1530-1538
        • Janicka A.
        • Wren T.A.
        • Sanchez M.M.
        • et al.
        Fat mass is not beneficial to bone in adolescents and young adults.
        J Clin Endocrinol Metab. 2007; 92: 143-147
        • Weiler H.A.
        • Janzen L.
        • Green K.
        • et al.
        Percent body fat and bone mass in healthy canadian females 10 to 19 years of age.
        Bone. 2000; 27: 203-207
        • Yang W.H.
        • Tsai C.H.
        • Fong Y.C.
        • et al.
        Leptin induces oncostatin m production in osteoblasts by downregulating miR-93 through the Akt signaling pathway.
        Int J Mol Sci. 2014; 15: 15778-15790
        • Sienkiewicz E.
        • Magkos F.
        • Aronis K.N.
        • et al.
        Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women.
        Metabolism. 2011; 60: 1211-1221
        • Legiran S.
        • Brandi M.L.
        Bone mass regulation of leptin and postmenopausal osteoporosis with obesity.
        Clin Cases Miner Bone Metab. 2012; 9: 145-149
        • Thomas T.
        • Burguera B.
        • Melton III, L.J.
        • et al.
        Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women.
        Bone. 2001; 29: 114-120
        • Fiorenza C.G.
        • Chou S.H.
        • Mantzoros C.S.
        Lipodystrophy: pathophysiology and advances in treatment.
        Nat Rev Endocrinol. 2011; 7: 137-150
        • Moran S.A.
        • Patten N.
        • Young J.R.
        • et al.
        Changes in body composition in patients with severe lipodystrophy after leptin replacement therapy.
        Metabolism. 2004; 53: 513-519
        • Bluher S.
        • Mantzoros C.S.
        Leptin in humans: lessons from translational research.
        Am J Clin Nutr. 2009; 89: 991S-997S
        • Mantzoros C.S.
        • Magkos F.
        • Brinkoetter M.
        • et al.
        Leptin in human physiology and pathophysiology.
        Am J Physiol Endocrinol Metab. 2011; 301: E567-E584
        • Lee J.H.
        • Chan J.L.
        • Sourlas E.
        • et al.
        Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy.
        J Clin Endocrinol Metab. 2006; 91: 2605-2611
        • Chan J.L.
        • Moschos S.J.
        • Bullen J.
        • et al.
        Recombinant methionyl human leptin administration activates signal transducer and activator of transcription 3 signaling in peripheral blood mononuclear cells in vivo and regulates soluble tumor necrosis factor-alpha receptor levels in humans with relative leptin deficiency.
        J Clin Endocrinol Metab. 2005; 90: 1625-1631
        • Burge R.
        • Dawson-Hughes B.
        • Solomon D.H.
        • et al.
        Incidence and economic burden of osteoporosis-related fractures in the united states, 2005–2025.
        J Bone Miner Res. 2007; 22: 465-475
        • Mantzoros C.S.
        • Flier J.S.
        Editorial: leptin as a therapeutic agent—trials and tribulations.
        J Clin Endocrinol Metab. 2000; 85: 4000-4002