Advertisement

Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels

      Abstract

      Background

      In response to physiologic stressors, skeletal muscle has the potential to elicit wide variety of adaptive responses, such as biogenesis of mitochondria and clearance of damaged mitochondria to promote healthy muscle. The polyphenol curcumin, derived from the rhizome Curcuma longa L., is a natural antioxidant that exhibits various pharmacological activities and therapeutic properties. However, the effect of curcumin on the regulation of mitochondrial biogenesis in skeletal muscle remains unknown. The present study aimed to examine the effects of combination of endurance training (eTR) and curcumin treatment on the expression of AMPK, SIRT1, PGC-1α, and OXPHOS subunits, mitochondrial DNA copy number, and CS activity in rat skeletal muscle. Furthermore, the present study also examined the effect of exercise and curcumin treatment on the levels of cAMP and downstream targets of PKA including phosphorylated CREB and LKB-1.

      Methods

      Ten-week-old male Wistar rats were randomly divided into non-eTR and eTR groups. Low doses (50 mg/kg-BW/day) or high doses (100 mg/kg-BW/day) of curcumin dissolved in dimethyl sulfoxide (DMSO) were injected intraperitoneally in all animals for 28 days to investigate the effect of curcumin alone and the combined effect of curcumin with eTR. Western blotting (WB) and immunoprecipitation (IP) were performed to detect the presence of proteins.

      Results

      Our results demonstrated that combination of curcumin treatment and eTR increased the expression of COX-IV, OXPHOS subunits, mitochondrial DNA copy number and CS activity in the gastrocnemius (Gas) and soleus (Sol) muscles. In addition, this combination increased AMPK phosphorylation, NAD+/NADH ratio, SIRT1 expression, and PGC-1α deacetylation. Furthermore, curcumin treatment as well as exercise also increased levels of cAMP and downstream target of PKA including phosphorylation CREB and LKB-1 which are involved in the regulation of mitochondrial biogenesis.

      Conclusion

      Taken together, these results suggest that the combination of curcumin treatment and eTR has the potential to accelerate mitochondrial biogenesis in skeletal muscle by increasing cAMP levels.

      Abbreviations:

      AMPK (5′ adenosine monophosphate-activated protein kinase), BW (body weight), cAMP (cyclic adenosine monophosphate), CREB (cAMP response element binding protein), COX-IV (cytochrome c oxidase subunit IV), CS (citrate synthase), DMSO (dimethyl sulfoxide), DNA (deoxyribonucleic acid), eTR (endurance training), Gas (gastrocnemius muscle), IP (immunoprecipitation), LKB-1 (liver kinase B1), NAD (nicotinamide adenine dinucleotide), NADH (nicotinamide adenine dinucleotide hydrogen), OXPHOS (oxidative phosphorylation), PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1alpha), PKA (protein kinase A), SIRT1 (sirtuin 1), Sol (soleus muscle), WB (western blotting), GLUT4 (Glucose transporter 4), NRF1/2 (nuclear respiratory factor1/2), GA (guanine adenine), Tfam (transcription factor A), mRNA (messenger ribonucleid acid), ADP (adenosine diphosphate), MMP (mitochondrial membrane potential), ATP (adenosine triphosphate), ROS (reactive oxygen species), NOS (nitric oxide synthase)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Patti M.E.
        • Butte A.J.
        • Crunkhorn S.
        • Cusi K.
        • Berria R.
        • Kashyap S.
        • et al.
        Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.
        Proc Natl Acad Sci U S A. 2003; 100: 8466-8471
        • Joseph A.M.
        • Joanisse D.R.
        • Baillot R.G.
        • Hood D.A.
        Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions.
        Exp Diabetes Res. 2012; 2012: 642038
        • Holloszy J.O.
        Regulation by exercise of skeletal muscle content of mitochondria and GLUT4.
        J Physiol Pharmacol. 2008; 59: 5-18
        • Piantadosi C.A.
        • Carraway M.S.
        • Babiker A.
        • Suliman H.B.
        Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1.
        Circ Res. 2008; 103: 1232-1240
        • Hock M.B.
        • Kralli A.
        Transcriptional control of mitochondrial biogenesis and function.
        Annu Rev Physiol. 2009; 71: 177-203
        • Terada S.
        • Tabata I.
        Effects of acute bouts of running and swimming exercise on PGC-1alpha protein expression in rat epitrochlearis and soleus muscle.
        Am J Physiol Endocrinol Metab. 2004; 286: 208-216
        • Terada S.
        • Goto M.
        • Kato M.
        • Kawanaka K.
        • Shimokawa T.
        • Tabata I.
        Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle.
        Biochem Biophys Res Commun. 2002; 296: 350-354
        • Pilegaard H.
        • Saltin B.
        • Neufer P.D.
        Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle.
        J Physiol. 2003; 546: 851-858
        • Baar K.
        • Wende A.R.
        • Jones T.E.
        • Marison M.
        • Nolte L.A.
        • Chen M.
        • et al.
        Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1.
        FASEB J. 2002; 16: 1879-1886
        • Taylor E.B.
        • Lamb J.D.
        • Hurst R.W.
        • Chesser D.G.
        • Ellingson W.J.
        • Greenwood L.J.
        • et al.
        Endurance training increases skeletal muscle LKB1 and PGC-1alpha protein abundance: effects of time and intensity.
        Am J Physiol Endocrinol Metab. 2005; 289: 960-968
        • Russell A.P.
        • Feilchenfeldt J.
        • Schreiber S.
        • Praz M.
        • Crettenand A.
        • Gobelet C.
        • et al.
        Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle.
        Diabetes. 2003; 52: 2874-2881
        • Baur J.A.
        • Chen D.
        • Chini E.N.
        • Chua K.
        • Cohen H.Y.
        • de Cabo R.
        • et al.
        Dietary restriction: standing up for sirtuins.
        Science. 2010; 329 ([author reply 3–4]): 1012-1013
        • Donmez G.
        • Guarente L.
        Aging and disease: connections to sirtuins.
        Aging Cell. 2010; 9: 285-290
        • Suwa M.
        • Nakano H.
        • Radak Z.
        • Kumagai S.
        Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle.
        Metabolism. 2008; 57: 986-998
        • Ferrara N.
        • Rinaldi B.
        • Corbi G.
        • Conti V.
        • Stiuso P.
        • Boccuti S.
        • et al.
        Exercise training promotes SIRT1 activity in aged rats.
        Rejuvenation Res. 2008; 11: 139-150
        • Suwa M.
        • Nakano H.
        • Radak Z.
        • Kumagai S.
        Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α protein expressions in rat skeletal muscle.
        Metabolism. 2008; 57: 986-998
        • Bogacka I.
        • Ukropcova B.
        • McNeil M.
        • Gimble J.M.
        • Smith S.R.
        Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro.
        J Clin Endocrinol Metab. 2005; 90: 6650-6656
        • Than T.A.
        • Lou H.
        • Ji C.
        • Win S.
        • Kaplowitz N.
        Role of cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) in the initiation of mitochondrial biogenesis and stress response in liver cells.
        J Biol Chem. 2011; 286: 22047-22054
        • Veeranki S.
        • Hwang S.-H.
        • Sun T.
        • Kim B.
        • Kim L.
        LKB1 regulates development and the stress response in Dictyostelium.
        Dev Biol. 2011; 360: 351-357
        • Palmer W.K.
        Effect of exercise on cardiac cyclic AMP.
        Med Sci Sports Exerc. 1988; 20: 525-530
        • Park S.-J.
        • Ahmad F.
        • Philp A.
        • Baar K.
        • Williams T.
        • Luo H.
        • et al.
        Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases.
        Cell. 2012; 148: 421-433
        • Chowanadisai W.
        • Bauerly K.A.
        • Tchaparian E.
        • Wong A.
        • Cortopassi G.A.
        • Rucker R.B.
        Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression.
        J Biol Chem. 2010; 285: 142-152
        • Aftab N.
        • Vieira A.
        Antioxidant activities of curcumin and combinations of this curcuminoid with other phytochemicals.
        Phytother Res. 2010; 24: 500-502
        • Eckert G.P.
        • Schiborr C.
        • Hagl S.
        • Abdel-Kader R.
        • Muller W.E.
        • Rimbach G.
        • et al.
        Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8.
        Neurochem Int. 2013; 62: 595-602
        • Kawanaka K.
        • Tabata I.
        • Katsuta S.
        • Higuchi M.
        Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training.
        J Appl Physiol. 1997; 83: 43-47
        • Blough E.
        • Dineen B.
        • Esser K.
        Extraction of nuclear proteins from striated muscle tissue.
        Biotechniques. 1999; 26 ([206]): 202-204
        • Furuichi Y.
        • Sugiura T.
        • Kato Y.
        • Shimada Y.
        • Masuda K.
        OCTN2 is associated with carnitine transport capacity of rat skeletal muscles.
        Acta Physiol. 2010; 200: 57-64
        • Srere P.A.
        [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)].
        in: John M.L. Meth Enzymol. Academic Press, 1969: 3-11
        • Stein S.C.
        • Woods A.
        • Jones N.A.
        • Davison M.D.
        • Carling D.
        The regulation of AMP-activated protein kinase by phosphorylation.
        Biochem J. 2000; 3: 437-443
        • Sakamoto K.
        • McCarthy A.
        • Smith D.
        • Green K.A.
        • Grahame Hardie D.
        • Ashworth A.
        • et al.
        Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction.
        EMBO J. 2005; 24: 1810-1820
        • Na L.X.
        • Zhang Y.L.
        • Li Y.
        • Liu L.Y.
        • Li R.
        • Kong T.
        • et al.
        Curcumin improves insulin resistance in skeletal muscle of rats.
        Nutr Metab Cardiovasc Dis. 2011; 21: 526-533
        • Gurd B.J.
        Deacetylation of PGC-1alpha by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis.
        Appl Physiol Nutr Metab. 2011; 36: 589-597
        • Ohyama K.
        • Nogusa Y.
        • Suzuki K.
        • Shinoda K.
        • Kajimura S.
        • Bannai M.
        A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice.
        Am J Physiol Endocrinol Metab. 2015; 308: 315-323
        • Abusnina A.
        • Keravis T.
        • Lugnier C.
        D020 The polyphenol curcumin inhibits in vitro angiogenesis and cyclic nucleotide phosphodiesterases (PDEs) activities similarly to PDE inhibitors.
        Arch Cardiovasc Dis. 2009; 102: S43
        • Liu L.
        • Zhang W.
        • Wang L.
        • Li Y.
        • Tan B.
        • Lu X.
        • et al.
        Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis.
        Neurochem Res. 2014; 39: 1322-1331
        • Kuo J.J.
        • Chang H.H.
        • Tsai T.H.
        • Lee T.Y.
        Curcumin ameliorates mitochondrial dysfunction associated with inhibition of gluconeogenesis in free fatty acid-mediated hepatic lipoapoptosis.
        Int J Mol Med. 2012; 30: 643-649
        • Roy R.R.
        • Hutchison D.L.
        • Pierotti D.J.
        • Hodgson J.A.
        • Edgerton V.R.
        EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming.
        J Appl Physiol. 1985; 70: 2522-2529
        • Menzies K.J.
        • Singh K.
        • Saleem A.
        • Hood D.A.
        Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis.
        J Biol Chem. 2013; 288: 6968-6979
        • Viña J.
        • Gomez-Cabrera M.C.
        • Borras C.
        • Froio T.
        • Sanchis-Gomar F.
        • Martinez-Bello V.E.
        • et al.
        Mitochondrial biogenesis in exercise and in ageing.
        Adv Drug Deliv Rev. 2009; 61: 1369-1374
        • Hatcher H.
        • Planalp R.
        • Cho J.
        • Torti F.M.
        • Torti S.V.
        Curcumin: from ancient medicine to current clinical trials.
        Cell Mol Life Sci. 2008; 65: 1631-1652
        • Hood D.A.
        Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle.
        J Appl Physiol. 1985; 90: 1137-1157
        • Williams R.S.
        • Salmons S.
        • Newsholme E.A.
        • Kaufman R.E.
        • Mellor J.
        Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle.
        J Biol Chem. 1986; 261: 376-380
        • Cheung P.C.
        • Salt I.P.
        • Davies S.P.
        • Hardie D.G.
        • Carling D.
        Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding.
        Biochem J. 2000; 346: 659-669
        • Stapleton D.
        • Woollatt E.
        • Mitchelhill K.I.
        • Nicholl J.K.
        • Fernandez C.S.
        • Michell B.J.
        • et al.
        AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location.
        FEBS Lett. 1997; 409: 452-456
        • Chen Z.P.
        • Stephens T.J.
        • Murthy S.
        • Canny B.J.
        • Hargreaves M.
        • Witters L.A.
        • et al.
        Effect of exercise intensity on skeletal muscle AMPK signaling in humans.
        Diabetes. 2003; 52: 2205-2212
        • Hardie D.G.
        • Carling D.
        • Carlson M.
        The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?.
        Annu Rev Biochem. 1998; 67: 821-855
        • Hardie D.G.
        • Hawley S.A.
        AMP-activated protein kinase: the energy charge hypothesis revisited.
        BioEssays. 2001; 23: 1112-1119
        • Zong H.
        • Ren J.M.
        • Young L.H.
        • Pypaert M.
        • Mu J.
        • Birnbaum M.J.
        • et al.
        AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation.
        Proc Natl Acad Sci U S A. 2002; 99: 15983-15987
        • Ejaz A.
        • Wu D.
        • Kwan P.
        • Meydani M.
        Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.
        J Nutr. 2009; 139: 919-925
        • Rodgers J.T.
        • Lerin C.
        • Gerhart-Hines Z.
        • Puigserver P.
        Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways.
        FEBS Lett. 2008; 582: 46-53
        • Price Nathan L.
        • Gomes Ana P.
        • Ling Alvin J.Y.
        • Duarte Filipe V.
        • Martin-Montalvo A.
        • North Brian J.
        • et al.
        SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.
        Cell Metab. 2012; 15: 675-690
        • Queen B.L.
        • Tollefsbol T.O.
        Polyphenols and aging.
        Curr Aging Sci. 2010; 3: 34-42
        • Chung S.
        • Yao H.
        • Caito S.
        • Hwang J.W.
        • Arunachalam G.
        • Rahman I.
        Regulation of SIRT1 in cellular functions: role of polyphenols.
        Arch Biochem Biophys. 2010; 501: 79-90
        • Yang Y.
        • Duan W.
        • Lin Y.
        • Yi W.
        • Liang Z.
        • Yan J.
        • et al.
        SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury.
        Free Radic Biol Med. 2013; 65: 667-679
        • Benton C.R.
        • Nickerson J.G.
        • Lally J.
        • Han X.X.
        • Holloway G.P.
        • Glatz J.F.
        • et al.
        Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria.
        J Biol Chem. 2008; 283: 4228-4240
        • Lin J.
        • Wu H.
        • Tarr P.T.
        • Zhang C.Y.
        • Wu Z.
        • Boss O.
        • et al.
        Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.
        Nature. 2002; 418: 797-801
        • Wu Z.
        • Puigserver P.
        • Andersson U.
        • Zhang C.
        • Adelmant G.
        • Mootha V.
        • et al.
        Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.
        Cell. 1999; 98: 115-124
        • Kuo J.J.
        • Chang H.H.
        • Tsai T.H.
        • Lee T.Y.
        Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis.
        Int J Mol Med. 2012; 30: 673-679
        • Uguccioni G.
        • Hood D.A.
        The importance of PGC-1alpha in contractile activity-induced mitochondrial adaptations.
        Am J Physiol Endocrinol Metab. 2011; 300: 361-371
        • Rodgers J.T.
        • Lerin C.
        • Haas W.
        • Gygi S.P.
        • Spiegelman B.M.
        • Puigserver P.
        Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.
        Nature. 2005; 434: 113-118
        • Abdel Aziz M.T.
        • Motawi T.
        • Rezq A.
        • Mostafa T.
        • Fouad H.H.
        • Ahmed H.H.
        • et al.
        Effects of a water-soluble curcumin protein conjugate vs. pure curcumin in a diabetic model of erectile dysfunction.
        J Sex Med. 2012; 9: 1815-1833
        • Nisoli E.
        • Tonello C.
        • Cardile A.
        • Cozzi V.
        • Bracale R.
        • Tedesco L.
        • et al.
        Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS.
        Science. 2005; 310: 314-317
        • Boily G.
        • He X.H.
        • Pearce B.
        • Jardine K.
        • McBurney M.W.
        SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol.
        Oncogene. 2009; 28: 2882-2893
        • Boily G.
        • Seifert E.L.
        • Bevilacqua L.
        • He X.H.
        • Sabourin G.
        • Estey C.
        • et al.
        SirT1 regulates energy metabolism and response to caloric restriction in mice.
        PLoS One. 2008; 3: e1759
        • Um J.H.
        • Park S.J.
        • Kang H.
        • Yang S.
        • Foretz M.
        • McBurney M.W.
        • et al.
        AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol.
        Diabetes. 2010; 59: 554-563
        • Canto C.
        • Gerhart-Hines Z.
        • Feige J.N.
        • Lagouge M.
        • Noriega L.
        • Milne J.C.
        • et al.
        AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
        Nature. 2009; 458: 1056-1060
        • Rouse M.
        • Younes A.
        • Egan J.M.
        Resveratrol and curcumin enhance pancreatic beta-cell function by inhibiting phosphodiesterase activity.
        J Endocrinol. 2014; 223: 107-117
        • Nam S.M.
        • Choi J.H.
        • Yoo D.Y.
        • Kim W.
        • Jung H.Y.
        • Kim J.W.
        • et al.
        Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling.
        J Med Food. 2014; 17: 641-649
        • Fernandez-Marcos P.J.
        • Auwerx J.
        Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis.
        Am J Clin Nutr. 2011; 93: 884-890
        • Koh H.J.
        • Brandauer J.
        • Goodyear L.J.
        LKB1 and AMPK and the regulation of skeletal muscle metabolism.
        Curr Opin Clin Nutr Metab Care. 2008; 11: 227-232
        • Kelly D.P.
        • Scarpulla R.C.
        Transcriptional regulatory circuits controlling mitochondrial biogenesis and function.
        Genes Dev. 2004; 18: 357-368