Advertisement
Review| Volume 64, ISSUE 11, P1395-1407, November 2015

Weight regaining: From statistics and behaviors to physiology and metabolism

      Abstract

      Achieving maintenance of weight loss is crucial to combat obesity. However, most individuals tend to regain weight. Data from successful maintainers show that they remain vigilant and constantly apply techniques to oppose the course of regaining. On the other hand, current advances in obesity research show that the reduced obese state is a state of altered physiology in terms of energy balance. This review describes the physiological adaptations occurring after weight loss that predispose to regaining. Specifically, changes regarding body composition, hormonal background, energy expenditure and control of food intake are discussed. Moreover, metabolites that can act as regain predictors and dietary techniques to oppose regaining are presented.

      Abbreviations:

      ACE (angiotensin I converting enzyme), BMI (body mass index), CART (cocaine and amphetamine-regulated transcript), CCK (cholecystokinin), CRP (C-reactive protein), DXA (dual-energy X-ray absorptiometry), FFM (fat-free mass), GLP-1 (glucagon-like peptide-1), MCH (melanin-concentrating hormone), NWCR (National Weight Control Registry), NPY (neuropeptide Y), NREE (non-resting energy expenditure), PYY (peptide YY), POMC (pro-opiomelanocortin), REE (resting energy expenditure), TEE (total energy expenditure)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flegal K.M.
        • Carroll M.D.
        • Kit B.K.
        • Ogden C.L.
        Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010.
        JAMA. 2012; 307: 491-497
        • Vidal J.
        Updated review on the benefits of weight loss.
        Int J Obes Relat Metab Disord. 2002; 26: S25-S28
        • Knowler W.C.
        • Barrett-Connor E.
        • Fowler S.E.
        • Hamman R.F.
        • Lachin J.M.
        • Walker E.A.
        • Diabetes Prevention Program Research Group
        • et al.
        Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
        N Engl J Med. 2002; 346: 393-403
        • Look A.R.G.
        • Pi-Sunyer X.
        • Blackburn G.
        • Brancati F.L.
        • Bray G.A.
        • Bright R.
        • et al.
        Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial.
        Diabetes Care. 2007; 30: 1374-1383
        • Wing R.R.
        • Lang W.
        • Wadden T.A.
        • Safford M.
        • Knowler W.C.
        • Bertoni A.G.
        • et al.
        Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes.
        Diabetes Care. 2011; 34: 1481-1486
        • Birks S.
        • Peeters A.
        • Backholer K.
        • O’Brien P.
        • Brown W.
        A systematic review of the impact of weight loss on cancer incidence and mortality.
        Obes Rev. 2012; 13: 868-891
        • Franz M.J.
        • VanWormer J.J.
        • Crain A.L.
        • Boucher J.L.
        • Histon T.
        • Caplan W.
        • et al.
        Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up.
        J Am Diet Assoc. 2007; 107: 1755-1767
        • Anderson J.W.
        • Konz E.C.
        • Frederich R.C.
        • Wood C.L.
        Long-term weight-loss maintenance: a meta-analysis of US studies.
        Am J Clin Nutr. 2001; 74: 579-584
        • Diabetes Prevention Program Research Group
        • Knowler W.C.
        • Fowler S.E.
        • Hamman R.F.
        • Christophi C.A.
        • Hoffman H.J.
        • et al.
        10-Year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study.
        Lancet. 2009; 374: 1677-1686
        • Look A.R.G.
        Eight-year weight losses with an intensive lifestyle intervention: the look AHEAD study.
        Obesity. 2014; 22: 5-13
        • McGuire M.T.
        • Wing R.R.
        • Hill J.O.
        The prevalence of weight loss maintenance among American adults.
        Int J Obes Relat Metab Disord. 1999; 23: 1314-1319
        • de Zwaan M.
        • Hilbert A.
        • Herpertz S.
        • Zipfel S.
        • Beutel M.
        • Gefeller O.
        • et al.
        Weight loss maintenance in a population-based sample of German adults.
        Obesity. 2008; 16: 2535-2540
        • Karfopoulou E.
        • Mouliou K.
        • Koutras Y.
        • Yannakoulia M.
        Behaviours associated with weight loss maintenance and regaining in a Mediterranean population sample. A qualitative study.
        Clin Obes. 2013; 3: 141-149
        • Mason C.
        • Foster-Schubert K.E.
        • Imayama I.
        • Xiao L.
        • Kong A.
        • Campbell K.L.
        • et al.
        History of weight cycling does not impede future weight loss or metabolic improvements in postmenopausal women.
        Metabolism. 2013; 62: 127-136
        • Byrne S.
        • Cooper Z.
        • Fairburn C.
        Weight maintenance and relapse in obesity: a qualitative study.
        Int J Obes Relat Metab Disord. 2003; 27: 955-962
        • Kruger J.
        • Blanck H.M.
        • Gillespie C.
        Dietary and physical activity behaviors among adults successful at weight loss maintenance.
        Int J Behav Nutr Phys Act. 2006; 3: 17
        • Barnes A.S.
        • Kimbro R.T.
        Descriptive study of educated African American women successful at weight-loss maintenance through lifestyle changes.
        J Gen Intern Med. 2012; 27: 1272-1279
        • Chambers J.A.
        • Swanson V.
        Stories of weight management: factors associated with successful and unsuccessful weight maintenance.
        Br J Health Psychol. 2012; 17: 223-243
        • Reyes N.R.
        • Oliver T.L.
        • Klotz A.A.
        • Lagrotte C.A.
        • Vander Veur S.S.
        • Virus A.
        • et al.
        Similarities and differences between weight loss maintainers and regainers: a qualitative analysis.
        J Acad Nutr Diet. 2012; 112: 499-505
        • Catenacci V.A.
        • Ogden L.G.
        • Stuht J.
        • Phelan S.
        • Wing R.R.
        • Hill J.O.
        • et al.
        Physical activity patterns in the National Weight Control Registry.
        Obesity. 2008; 16: 153-161
        • Phelan S.
        • Wyatt H.R.
        • Hill J.O.
        • Wing R.R.
        Are the eating and exercise habits of successful weight losers changing?.
        Obesity. 2006; 14: 710-716
        • Raynor H.A.
        • Van Walleghen E.L.
        • Bachman J.L.
        • Looney S.M.
        • Phelan S.
        • Wing R.R.
        Dietary energy density and successful weight loss maintenance.
        Eat Behav. 2011; 12: 119-125
        • Butryn M.L.
        • Phelan S.
        • Hill J.O.
        • Wing R.R.
        Consistent self-monitoring of weight: a key component of successful weight loss maintenance.
        Obesity. 2007; 15: 3091-3096
        • Thomas J.G.
        • Bond D.S.
        • Phelan S.
        • Hill J.O.
        • Wing R.R.
        Weight-loss maintenance for 10 years in the National Weight Control Registry.
        Am J Prev Med. 2014; 46: 17-23
        • Ogden L.G.
        • Stroebele N.
        • Wyatt H.R.
        • Catenacci V.A.
        • Peters J.C.
        • Stuht J.
        • et al.
        Cluster analysis of the National Weight Control Registry to identify distinct subgroups maintaining successful weight loss.
        Obesity. 2012; 20: 2039-2047
        • Catenacci V.A.
        • Odgen L.
        • Phelan S.
        • Thomas J.G.
        • Hill J.
        • Wing R.R.
        • et al.
        Dietary habits and weight maintenance success in high versus low exercisers in the National Weight Control Registry.
        J Phys Act Health. 2014; 11: 1540-1548
        • Ravussin E.
        • Lillioja S.
        • Anderson T.E.
        • Christin L.
        • Bogardus C.
        Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber.
        J Clin Invest. 1986; 78: 1568-1578
        • Chaston T.B.
        • Dixon J.B.
        • O’Brien P.E.
        Changes in fat-free mass during significant weight loss: a systematic review.
        Int J Obes (Lond). 2007; 31: 743-750
        • Heymsfield S.B.
        • Gonzalez M.C.
        • Shen W.
        • Redman L.
        • Thomas D.
        Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule.
        Obes Rev. 2014; 15: 310-321
        • Stiegler P.
        • Cunliffe A.
        The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss.
        Sports Med. 2006; 36: 239-262
        • Hunter G.R.
        • Byrne N.M.
        • Sirikul B.
        • Fernandez J.R.
        • Zuckerman P.A.
        • Darnell B.E.
        • et al.
        Resistance training conserves fat-free mass and resting energy expenditure following weight loss.
        Obesity. 2008; 16: 1045-1051
        • Carnier J.
        • de Mello M.T.
        • Ackel D.C.
        • Corgosinho F.C.
        • Campos R.M.
        • Sanches Pde L.
        • et al.
        Aerobic training (AT) is more effective than aerobic plus resistance training (AT + RT) to improve anorexigenic/orexigenic factors in obese adolescents.
        Appetite. 2013; 69: 168-173
        • Miller C.T.
        • Fraser S.F.
        • Levinger I.
        • Straznicky N.E.
        • Dixon J.B.
        • Reynolds J.
        • et al.
        The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: a systematic review.
        PLoS One. 2013; 8: e81692
        • Astrup A.
        • Gotzsche P.C.
        • van de Werken K.
        • Ranneries C.
        • Toubro S.
        • Raben A.
        • et al.
        Meta-analysis of resting metabolic rate in formerly obese subjects.
        Am J Clin Nutr. 1999; 69: 1117-1122
        • Wyatt H.R.
        • Grunwald G.K.
        • Seagle H.M.
        • Klem M.L.
        • McGuire M.T.
        • Wing R.R.
        • et al.
        Resting energy expenditure in reduced-obese subjects in the National Weight Control Registry.
        Am J Clin Nutr. 1999; 69: 1189-1193
        • Schwartz A.
        • Doucet E.
        Relative changes in resting energy expenditure during weight loss: a systematic review.
        Obes Rev. 2010; 11: 531-547
        • Leibel R.L.
        • Rosenbaum M.
        • Hirsch J.
        Changes in energy expenditure resulting from altered body weight.
        N Engl J Med. 1995; 332: 621-628
        • Doucet E.
        • St-Pierre S.
        • Almeras N.
        • Despres J.P.
        • Bouchard C.
        • Tremblay A.
        Evidence for the existence of adaptive thermogenesis during weight loss.
        Br J Nutr. 2001; 85: 715-723
        • Heilbronn L.K.
        • de Jonge L.
        • Frisard M.I.
        • DeLany J.P.
        • Larson-Meyer D.E.
        • Rood J.
        • et al.
        Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial.
        JAMA. 2006; 295: 1539-1548
        • Johannsen D.L.
        • Knuth N.D.
        • Huizenga R.
        • Rood J.C.
        • Ravussin E.
        • Hall K.D.
        Metabolic slowing with massive weight loss despite preservation of fat-free mass.
        J Clin Endocrinol Metab. 2012; 97: 2489-2496
        • Rosenbaum M.
        • Hirsch J.
        • Gallagher D.A.
        • Leibel R.L.
        Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight.
        Am J Clin Nutr. 2008; 88: 906-912
        • Camps S.G.
        • Verhoef S.P.
        • Westerterp K.R.
        Weight loss, weight maintenance, and adaptive thermogenesis.
        Am J Clin Nutr. 2013; 97: 990-994
        • Schwartz A.
        • Kuk J.L.
        • Lamothe G.
        • Doucet E.
        Greater than predicted decrease in resting energy expenditure and weight loss: results from a systematic review.
        Obesity. 2012; 20: 2307-2310
        • Weinsier R.L.
        • Nagy T.R.
        • Hunter G.R.
        • Darnell B.E.
        • Hensrud D.D.
        • Weiss H.L.
        Do adaptive changes in metabolic rate favor weight regain in weight-reduced individuals? An examination of the set-point theory.
        Am J Clin Nutr. 2000; 72: 1088-1094
        • de Jonge L.
        • Bray G.A.
        • Smith S.R.
        • Ryan D.H.
        • de Souza R.J.
        • Loria C.M.
        • et al.
        Effect of diet composition and weight loss on resting energy expenditure in the POUNDS LOST study.
        Obesity. 2012; 20: 2384-2389
        • Weigle D.S.
        • Sande K.J.
        • Iverius P.H.
        • Monsen E.R.
        • Brunzell J.D.
        Weight loss leads to a marked decrease in nonresting energy expenditure in ambulatory human subjects.
        Metabolism. 1988; 37: 930-936
        • Keim N.L.
        • Barbieri T.F.
        • Van Loan M.D.
        • Anderson B.L.
        Energy expenditure and physical performance in overweight women: response to training with and without caloric restriction.
        Metabolism. 1990; 39: 651-658
        • Leyton G.B.
        Effects of slow starvation.
        Lancet. 1946; 2: 73-79
        • Levine J.A.
        • Eberhardt N.L.
        • Jensen M.D.
        Role of nonexercise activity thermogenesis in resistance to fat gain in humans.
        Science. 1999; 283: 212-214
        • Heymsfield S.B.
        • Harp J.B.
        • Reitman M.L.
        • Beetsch J.W.
        • Schoeller D.A.
        • Erondu N.
        • et al.
        Why do obese patients not lose more weight when treated with low-calorie diets? A mechanistic perspective.
        Am J Clin Nutr. 2007; 85: 346-354
        • Krieger J.W.
        • Sitren H.S.
        • Daniels M.J.
        • Langkamp-Henken B.
        Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1.
        Am J Clin Nutr. 2006; 83: 260-274
        • Wycherley T.P.
        • Moran L.J.
        • Clifton P.M.
        • Noakes M.
        • Brinkworth G.D.
        Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials.
        Am J Clin Nutr. 2012; 96: 1281-1298
        • Soenen S.
        • Martens E.A.
        • Hochstenbach-Waelen A.
        • Lemmens S.G.
        • Westerterp-Plantenga M.S.
        Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass.
        J Nutr. 2013; 143: 591-596
        • Ebbeling C.B.
        • Swain J.F.
        • Feldman H.A.
        • Wong W.W.
        • Hachey D.L.
        • Garcia-Lago E.
        • et al.
        Effects of dietary composition on energy expenditure during weight-loss maintenance.
        JAMA. 2012; 307: 2627-2634
        • Harrold J.A.
        • Dovey T.M.
        • Blundell J.E.
        • Halford J.C.
        CNS regulation of appetite.
        Neuropharmacology. 2012; 63: 3-17
        • Williams L.M.
        Hypothalamic dysfunction in obesity.
        Proc Nutr Soc. 2012; 71: 521-533
        • Kelesidis T.
        • Kelesidis I.
        • Chou S.
        • Mantzoros C.S.
        Narrative review: the role of leptin in human physiology: emerging clinical applications.
        Ann Intern Med. 2010; 152: 93-100
        • Munzberg H.
        • Morrison C.D.
        Structure, production and signaling of leptin.
        Metabolism. 2015; 64: 13-23
        • Zeigerer A.
        • Rodeheffer M.S.
        • McGraw T.E.
        • Friedman J.M.
        Insulin regulates leptin secretion from 3T3-L1 adipocytes by a PI 3 kinase independent mechanism.
        Exp Cell Res. 2008; 314: 2249-2256
        • Tasyurek H.M.
        • Altunbas H.A.
        • Balci M.K.
        • Sanlioglu S.
        Incretins: their physiology and application in the treatment of diabetes mellitus.
        Diabetes Metab Res Rev. 2014; 30: 354-371
        • Chambers E.S.
        • Morrison D.J.
        • Frost G.
        Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms?.
        Proc Nutr Soc. 2015; 74: 328-336
        • Boden G.
        • Chen X.
        • Mozzoli M.
        • Ryan I.
        Effect of fasting on serum leptin in normal human subjects.
        J Clin Endocrinol Metab. 1996; 81: 3419-3423
        • Weigle D.S.
        • Duell P.B.
        • Connor W.E.
        • Steiner R.A.
        • Soules M.R.
        • Kuijper J.L.
        Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels.
        J Clin Endocrinol Metab. 1997; 82: 561-565
        • Dubuc G.R.
        • Phinney S.D.
        • Stern J.S.
        • Havel P.J.
        Changes of serum leptin and endocrine and metabolic parameters after 7 days of energy restriction in men and women.
        Metabolism. 1998; 47: 429-434
        • Utriainen T.
        • Malmstrom R.
        • Makimattila S.
        • Yki-Jarvinen H.
        Supraphysiological hyperinsulinemia increases plasma leptin concentrations after 4 h in normal subjects.
        Diabetes. 1996; 45: 1364-1366
        • Keim N.L.
        • Stern J.S.
        • Havel P.J.
        Relation between circulating leptin concentrations and appetite during a prolonged, moderate energy deficit in women.
        Am J Clin Nutr. 1998; 68: 794-801
        • Campbell K.L.
        • Foster-Schubert K.E.
        • Makar K.W.
        • Kratz M.
        • Hagman D.
        • Schur E.A.
        • et al.
        Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss.
        Cancer Prev Res (Phila). 2013; 6: 217-231
        • You T.
        • Wang X.
        • Murphy K.M.
        • Lyles M.F.
        • Demons J.L.
        • Yang R.
        • et al.
        Regional adipose tissue hormone/cytokine production before and after weight loss in abdominally obese women.
        Obesity. 2014; 22: 1679-1684
        • Zhang Y.
        • Guo K.Y.
        • Diaz P.A.
        • Heo M.
        • Leibel R.L.
        Determinants of leptin gene expression in fat depots of lean mice.
        Am J Physiol Regul Integr Comp Physiol. 2002; 282: R226-R234
        • Lofgren P.
        • Andersson I.
        • Adolfsson B.
        • Leijonhufvud B.M.
        • Hertel K.
        • Hoffstedt J.
        • et al.
        Long-term prospective and controlled studies demonstrate adipose tissue hypercellularity and relative leptin deficiency in the postobese state.
        J Clin Endocrinol Metab. 2005; 90: 6207-6213
        • Fogteloo A.J.
        • Pijl H.
        • Frolich M.
        • McCamish M.
        • Meinders A.E.
        Effects of recombinant human leptin treatment as an adjunct of moderate energy restriction on body weight, resting energy expenditure and energy intake in obese humans.
        Diabetes Nutr Metab. 2003; 16: 109-114
        • Heymsfield S.B.
        • Greenberg A.S.
        • Fujioka K.
        • Dixon R.M.
        • Kushner R.
        • Hunt T.
        • et al.
        Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial.
        JAMA. 1999; 282: 1568-1575
        • Sumithran P.
        • Prendergast L.A.
        • Delbridge E.
        • Purcell K.
        • Shulkes A.
        • Kriketos A.
        • et al.
        Long-term persistence of hormonal adaptations to weight loss.
        N Engl J Med. 2011; 365: 1597-1604
        • Sahin-Efe A.
        • Polyzos S.A.
        • Dincer F.
        • Zaichenko L.
        • McGovern R.
        • Schneider B.
        • et al.
        Intracellular leptin signaling following effective weight loss.
        Metabolism. 2015; 64: 888-895
        • Rosenbaum M.
        • Sy M.
        • Pavlovich K.
        • Leibel R.L.
        • Hirsch J.
        Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli.
        J Clin Invest. 2008; 118: 2583-2591
        • Kissileff H.R.
        • Thornton J.C.
        • Torres M.I.
        • Pavlovich K.
        • Mayer L.S.
        • Kalari V.
        • et al.
        Leptin reverses declines in satiation in weight-reduced obese humans.
        Am J Clin Nutr. 2012; 95: 309-317
        • Doucet E.
        • Pierre St
        • Almeras S.
        • Mauriege N.
        • Richard P.
        • Tremblay D.
        • et al.
        Changes in energy expenditure and substrate oxidation resulting from weight loss in obese men and women: is there an important contribution of leptin?.
        J Clin Endocrinol Metab. 2000; 85: 1550-1556
        • Rosenbaum M.
        • Murphy E.M.
        • Heymsfield S.B.
        • Matthews D.E.
        • Leibel R.L.
        Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones.
        J Clin Endocrinol Metab. 2002; 87: 2391-2394
        • Chan J.L.
        • Heist K.
        • DePaoli A.M.
        • Veldhuis J.D.
        • Mantzoros C.S.
        The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men.
        J Clin Invest. 2003; 111: 1409-1421
        • Rosenbaum M.
        • Goldsmith R.
        • Bloomfield D.
        • Magnano A.
        • Weimer L.
        • Heymsfield S.
        • et al.
        Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight.
        J Clin Invest. 2005; 115: 3579-3586
        • Baldwin K.M.
        • Joanisse D.R.
        • Haddad F.
        • Goldsmith R.L.
        • Gallagher D.
        • Pavlovich K.H.
        • et al.
        Effects of weight loss and leptin on skeletal muscle in human subjects.
        Am J Physiol Regul Integr Comp Physiol. 2011; 301: R1259-R1266
        • Paz-Filho G.
        • Mastronardi C.A.
        • Licinio J.
        Leptin treatment: facts and expectations.
        Metabolism. 2015; 64: 146-156
        • Korner J.
        • Conroy R.
        • Febres G.
        • McMahon D.J.
        • Conwell I.
        • Karmally W.
        • et al.
        Randomized double-blind placebo-controlled study of leptin administration after gastric bypass.
        Obesity. 2013; 21: 951-956
        • Chearskul S.
        • Delbridge E.
        • Shulkes A.
        • Proietto J.
        • Kriketos A.
        Effect of weight loss and ketosis on postprandial cholecystokinin and free fatty acid concentrations.
        Am J Clin Nutr. 2008; 87: 1238-1246
        • de Luis D.A.
        • Gonzalez Sagrado M.
        • Conde R.
        • Aller R.
        • Izaola O.
        Decreased basal levels of glucagon-like peptide-1 after weight loss in obese subjects.
        Ann Nutr Metab. 2007; 51: 134-138
        • Essah P.A.
        • Levy J.R.
        • Sistrun S.N.
        • Kelly S.M.
        • Nestler J.E.
        Effect of weight loss by a low-fat diet and a low-carbohydrate diet on peptide YY levels.
        Int J Obes (Lond). 2010; 34: 1239-1242
        • Pfluger P.T.
        • Kampe J.
        • Castaneda T.R.
        • Vahl T.
        • D’Alessio D.A.
        • Kruthaupt T.
        • et al.
        Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36.
        J Clin Endocrinol Metab. 2007; 92: 583-588
        • Reinehr T.
        • de Sousa G.
        • Roth C.L.
        Fasting glucagon-like peptide-1 and its relation to insulin in obese children before and after weight loss.
        J Pediatr Gastroenterol Nutr. 2007; 44: 608-612
        • Cummings D.E.
        • Weigle D.S.
        • Frayo R.S.
        • Breen P.A.
        • Ma M.K.
        • Dellinger E.P.
        • et al.
        Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.
        N Engl J Med. 2002; 346: 1623-1630
        • Adam T.C.
        • Lejeune M.P.
        • Westerterp-Plantenga M.S.
        Nutrient-stimulated glucagon-like peptide 1 release after body-weight loss and weight maintenance in human subjects.
        Br J Nutr. 2006; 95: 160-167
        • Garcia J.M.
        • Iyer D.
        • Poston W.S.
        • Marcelli M.
        • Reeves R.
        • Foreyt J.
        • et al.
        Rise of plasma ghrelin with weight loss is not sustained during weight maintenance.
        Obesity. 2006; 14: 1716-1723
        • Hayes M.R.
        • Miller C.K.
        • Ulbrecht J.S.
        • Mauger J.L.
        • Parker-Klees L.
        • Gutschall M.D.
        • et al.
        A carbohydrate-restricted diet alters gut peptides and adiposity signals in men and women with metabolic syndrome.
        J Nutr. 2007; 137: 1944-1950
        • Mason C.
        • Xiao L.
        • Imayama I.
        • Duggan C.R.
        • Campbell K.L.
        • Kong A.
        • et al.
        The effects of separate and combined dietary weight loss and exercise on fasting ghrelin concentrations in overweight and obese women: a randomized controlled trial.
        Clin Endocrinol (Oxf). 2015; 82: 369-376
        • Strohacker K.
        • McCaffery J.M.
        • MacLean P.S.
        • Wing R.R.
        Adaptations of leptin, ghrelin or insulin during weight loss as predictors of weight regain: a review of current literature.
        Int J Obes (Lond). 2014; 38: 388-396
        • Wong M.H.
        • Holst C.
        • Astrup A.
        • Handjieva-Darlenska T.
        • Jebb S.A.
        • Kafatos A.
        • DiOgenes
        • et al.
        Caloric restriction induces changes in insulin and body weight measurements that are inversely associated with subsequent weight regain.
        PLoS One. 2012; 7: e42858
        • Crujeiras A.B.
        • Diaz-Lagares A.
        • Abete I.
        • Goyenechea E.
        • Amil M.
        • Martinez J.A.
        • et al.
        Pre-treatment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost weight after an energy restriction treatment.
        J Endocrinol Invest. 2014; 37: 119-126
        • Crujeiras A.B.
        • Goyenechea E.
        • Abete I.
        • Lage M.
        • Carreira M.C.
        • Martinez J.A.
        • et al.
        Weight regain after a diet-induced loss is predicted by higher baseline leptin and lower ghrelin plasma levels.
        J Clin Endocrinol Metab. 2010; 95: 5037-5044
        • Wang P.
        • Holst C.
        • Astrup A.
        • Bouwman F.G.
        • van Otterdijk S.
        • Wodzig W.K.
        • et al.
        Blood profiling of proteins and steroids during weight maintenance with manipulation of dietary protein level and glycaemic index.
        Br J Nutr. 2012; 107: 106-119
        • Wang P.
        • Holst C.
        • Wodzig W.K.
        • Andersen M.R.
        • Astrup A.
        • van Baak M.A.
        • Diogenes consortium
        • et al.
        Circulating ACE is a predictor of weight loss maintenance not only in overweight and obese women, but also in men.
        Int J Obes (Lond). 2012; 36: 1545-1551
        • Wang P.
        • Holst C.
        • Andersen M.R.
        • Astrup A.
        • Bouwman F.G.
        • van Otterdijk S.
        • et al.
        Blood profile of proteins and steroid hormones predicts weight change after weight loss with interactions of dietary protein level and glycemic index.
        PLoS One. 2011; 6: e16773
        • Wang P.
        • Menheere P.P.
        • Astrup A.
        • Andersen M.R.
        • van Baak M.A.
        • Larsen T.M.
        • Diogenes consortium
        • et al.
        Metabolic syndrome, circulating RBP4, testosterone, and SHBG predict weight regain at 6 months after weight loss in men.
        Obesity. 2013; 21: 1997-2006
        • Brink M.
        • Wellen J.
        • Delafontaine P.
        Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism.
        J Clin Invest. 1996; 97: 2509-2516
        • Brown N.J.
        • Agirbasli M.
        • Vaughan D.E.
        Comparative effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor antagonism on plasma fibrinolytic balance in humans.
        Hypertension. 1999; 34: 285-290
        • Cassis L.A.
        • Marshall D.E.
        • Fettinger M.J.
        • Rosenbluth B.
        • Lodder R.A.
        Mechanisms contributing to angiotensin II regulation of body weight.
        Am J Physiol. 1998; 274: E867-E876
        • Porter J.P.
        • Potratz K.R.
        Effect of intracerebroventricular angiotensin II on body weight and food intake in adult rats.
        Am J Physiol Regul Integr Comp Physiol. 2004; 287: R422-R428
        • Zaman A.K.
        • Fujii S.
        • Sawa H.
        • Goto D.
        • Ishimori N.
        • Watano K.
        • et al.
        Angiotensin-converting enzyme inhibition attenuates hypofibrinolysis and reduces cardiac perivascular fibrosis in genetically obese diabetic mice.
        Circulation. 2001; 103: 3123-3128
        • Crujeiras A.B.
        • Campion J.
        • Diaz-Lagares A.
        • Milagro F.I.
        • Goyenechea E.
        • Abete I.
        • et al.
        Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study.
        Regul Pept. 2013; 186: 1-6
        • Berthoud H.R.
        • Morrison C.
        The brain, appetite, and obesity.
        Annu Rev Psychol. 2008; 59: 55-92
        • Hill B.R.
        • Rolls B.J.
        • Roe L.S.
        • De Souza M.J.
        • Williams N.I.
        Ghrelin and peptide YY increase with weight loss during a 12-month intervention to reduce dietary energy density in obese women.
        Peptides. 2013; 49: 138-144
        • Jakubowicz D.
        • Barnea M.
        • Wainstein J.
        • Froy O.
        High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women.
        Obesity. 2013; 21: 2504-2512
        • Jakubowicz D.
        • Froy O.
        • Wainstein J.
        • Boaz M.
        Meal timing and composition influence ghrelin levels, appetite scores and weight loss maintenance in overweight and obese adults.
        Steroids. 2012; 77: 323-331
        • Larsen T.M.
        • Dalskov S.M.
        • van Baak M.
        • Jebb S.A.
        • Papadaki A.
        • Pfeiffer A.F.
        • et al.
        Diets with high or low protein content and glycemic index for weight-loss maintenance.
        N Engl J Med. 2010; 363: 2102-2113
        • Paddon-Jones D.
        • Westman E.
        • Mattes R.D.
        • Wolfe R.R.
        • Astrup A.
        • Westerterp-Plantenga M.
        Protein, weight management, and satiety.
        Am J Clin Nutr. 2008; 87: 1558S-1561S
        • Tsai A.G.
        • Wadden T.A.
        The evolution of very-low-calorie diets: an update and meta-analysis.
        Obesity. 2006; 14: 1283-1293
        • Donnelly J.E.
        • Blair S.N.
        • Jakicic J.M.
        • Manore M.M.
        • Rankin J.W.
        • Smith B.K.
        • American College of Sports Medicine
        American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults.
        Med Sci Sports Exerc. 2009; 41: 459-471
        • Jakicic J.M.
        • Marcus B.H.
        • Lang W.
        • Janney C.
        Effect of exercise on 24-month weight loss maintenance in overweight women.
        Arch Intern Med. 2008; 168: 1550-1559
        • Long S.J.
        • Hart K.
        • Morgan L.M.
        The ability of habitual exercise to influence appetite and food intake in response to high- and low-energy preloads in man.
        Br J Nutr. 2002; 87: 517-523
        • Van Walleghen E.L.
        • Orr J.S.
        • Gentile C.L.
        • Davy K.P.
        • Davy B.M.
        Habitual physical activity differentially affects acute and short-term energy intake regulation in young and older adults.
        Int J Obes (Lond). 2007; 31: 1277-1285
        • King N.A.
        • Caudwell P.P.
        • Hopkins M.
        • Stubbs J.R.
        • Naslund E.
        • Blundell J.E.
        Dual-process action of exercise on appetite control: increase in orexigenic drive but improvement in meal-induced satiety.
        Am J Clin Nutr. 2009; 90: 921-927
        • Horner K.M.
        • Byrne N.M.
        • Cleghorn G.J.
        • Naslund E.
        • King N.A.
        The effects of weight loss strategies on gastric emptying and appetite control.
        Obes Rev. 2011; 12: 935-951
        • Cornier M.A.
        • Melanson E.L.
        • Salzberg A.K.
        • Bechtell J.L.
        • Tregellas J.R.
        The effects of exercise on the neuronal response to food cues.
        Physiol Behav. 2012; 105: 1028-1034
        • Perri M.G.
        • McAllister D.A.
        • Gange J.J.
        • Jordan R.C.
        • McAdoo G.
        • Nezu A.M.
        Effects of four maintenance programs on the long-term management of obesity.
        J Consult Clin Psychol. 1988; 56: 529-534
        • Phelan S.
        • Hill J.O.
        • Lang W.
        • Dibello J.R.
        • Wing R.R.
        Recovery from relapse among successful weight maintainers.
        Am J Clin Nutr. 2003; 78: 1079-1084