Effects of the BET-inhibitor, RVX-208 on the HDL lipidome and glucose metabolism in individuals with prediabetes: A randomized controlled trial



      High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) can modulate glucose metabolism through multiple mechanisms. This study determined the effects of a novel bromodomain and extra-terminal (BET) inhibitor (RVX-208) and putative apoA-I inducer on lipid species contained within HDL (HDL lipidome) and glucose metabolism.

      Materials and methods

      Twenty unmedicated males with prediabetes received 100 mg b.i.d. RVX-208 and placebo for 29–33 days separated by a wash-out period in a randomized, cross-over design trial. Plasma HDL-cholesterol and apoA-I were assessed as well as lipoprotein particle size and distribution using NMR spectroscopy. An oral glucose tolerance test (OGTT) protocol with oral and infused stable isotope tracers was employed to assess postprandial plasma glucose, indices of insulin secretion and insulin sensitivity, glucose kinetics and lipolysis. Whole plasma and HDL lipid profiles were measured using mass spectrometry.


      RVX-208 treatment for 4 weeks increased 6 sphingolipid and 4 phospholipid classes in the HDL lipidome (p ≤ 0.05 versus placebo), but did not change conventional clinical lipid measures. The concentration of medium-sized HDL particles increased by 11% (P = 0.01) and small-sized HDL particles decreased by 10% (P = 0.04) after RVX-208 treatment. In response to a glucose load, after RVX-208 treatment, plasma glucose peaked at a similar level to placebo, but 30 min later with a more sustained elevation (treatment effect, P = 0.003). There was a reduction and delay in total (P = 0.001) and oral (P = 0.003) glucose rates of appearance in plasma and suppression of endogenous glucose production (P = 0.014) after RVX-208 treatment. The rate of glucose disappearance was also lower following RVX-208 (P = 0.016), with no effect on glucose oxidation or total glucose disposal.


      RVX-208 increased 10 lipid classes in the plasma HDL fraction, without altering the concentrations of either apoA-I or HDL-cholesterol (HDL-C). RVX-208 delayed and reduced oral glucose absorption and endogenous glucose production, with plasma glucose maintained via reduced peripheral glucose disposal. If sustained, these effects may protect against the development of type 2 diabetes.



      ALT (alanine aminotransferase), AMPK (AMP-activated protein kinase), ApoA-I (apolipoprotein A-I), ApoA-II (apolipoprotein A-II), AST (aspartate aminotransferase), BET (bromodomain and extra-terminal), BH (Benjamini-Hochberg), BMI (body mass index), CE (cholesteryl ester), Cer (ceramide), CETP (cholesteryl ester transfer protein), COH (free cholesterol), DG (diacylglycerol), DHC (dihexosylceramide), dhCer (dihydroceramide), DI (disposition index), eGFR (estimated glomerular filtration rate), FBE (full blood examination), GGT (gamma-glutamyl transpeptidase), GIP (gastric inhibitory polypeptide), GLP-1 (glucagon-like peptide 1), GM3 (GM3 ganglioside), HbA1c (glycated hemoglobin), HDL (high-density lipoprotein), HDL-C (HDL-cholesterol), hsCRP (high-sensitivity C-reactive protein), IDL (intermediate-density lipoprotein), LCAT (lecithin-cholesterol acyltransferase), LC-ESI-MS/MS (liquid chromatography, electrospray ionization tandem mass spectrometry), LDL (low-density lipoprotein), LDL-C (LDL-cholesterol), LFT (liver function test), LPC (lysophosphatidylcholine), LPC(O) (lysoalkylphosphatidylcholine), LPE (lysophosphatidylethanolamine), LPI (lysophosphatidylinositol), MCH (mean corpuscular hemoglobin), MCHC (mean corpuscular hemoglobin concentration), MCV (mean corpuscle volume), MHC (monohexosylceramide), NMR (nuclear magnetic resonance), OGTT (oral glucose tolerance test), PC (phosphatidylcholine), PC(O) (alkylphosphatidylcholine), PC(P) (alkenylphosphatidylcholine), PE (phosphatidylethanolamine), PE(O) (alkylphosphatidylethanolamine), PE(P) (alkenylphosphatidylethanolamine), PG (phosphatidylglycerol), PI (phosphatidylinositol), PS (phosphatidylserine), Ra (rate of appearance), Rd (rate of disappearance), RDW (red cell distribution width), rHDL (reconstituted HDL), S1P (sphingosine-1-phosphate), SI (insulin sensitivity index), SM (sphingomyelin), T2DM (type 2 diabetes mellitus), TG (triglycerides/triacylglycerides), THC (trihexosylceramide), U&E (urea and electrolytes), VLDL (very low-density lipoprotein)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Drew B.G.
        • Duffy S.J.
        • Formosa M.F.
        • Natoli A.K.
        • Henstridge D.C.
        • Penfold S.A.
        • et al.
        High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus.
        Circulation. 2009; 119: 2103-2111
        • Drew B.G.
        • Rye K.A.
        • Duffy S.J.
        • Barter P.
        • Kingwell B.A.
        The emerging role of HDL in glucose metabolism.
        Nat Rev Endocrinol. 2012; 8: 237-245
        • Barter P.J.
        • Rye K.A.
        • Tardif J.C.
        • Waters D.D.
        • Boekholdt S.M.
        • Breazna A.
        • et al.
        Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial.
        Circulation. 2011; 124: 555-562
        • Fryirs M.A.
        • Barter P.J.
        • Appavoo M.
        • Tuch B.E.
        • Tabet F.
        • Heather A.K.
        • et al.
        Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion.
        Arterioscler Thromb Vasc Biol. 2010; 30: 1642-1648
        • Siebel A.L.
        • Natoli A.K.
        • Yap F.Y.
        • Carey A.L.
        • Reddy-Luthmoodoo M.
        • Sviridov D.
        • et al.
        Effects of high-density lipoprotein elevation with cholesteryl ester transfer protein inhibition on insulin secretion.
        Circ Res. 2013; 113: 167-175
        • Carey A.L.
        • Siebel A.L.
        • Reddy-Luthmoodoo M.
        • Natoli A.K.
        • D'Souza W.
        • Meikle P.J.
        • et al.
        Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein.
        PLoS One. 2013; 8: e56601
        • Rohatgi A.
        • Khera A.
        • Berry J.D.
        • Givens E.G.
        • Ayers C.R.
        • Wedin K.E.
        • et al.
        HDL cholesterol efflux capacity and incident cardiovascular events.
        N Engl J Med. 2014; 371: 2383-2393
        • Kingwell B.A.
        • Chapman M.J.
        • Kontush A.
        • Miller N.E.
        HDL-targeted therapies: progress, failures and future.
        Nat Rev Drug Discov. 2014; 13: 445-464
        • Camont L.
        • Lhomme M.
        • Rached F.
        • Le Goff W.
        • Negre-Salvayre A.
        • Salvayre R.
        • et al.
        Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities.
        Arterioscler Thromb Vasc Biol. 2013; 33: 2715-2723
        • Kingwell B.A.
        • Chapman M.J.
        Future of high-density lipoprotein infusion therapies: potential for clinical management of vascular disease.
        Circulation. 2013; 128: 1112-1121
        • Bailey D.
        • Jahagirdar R.
        • Gordon A.
        • Hafiane A.
        • Campbell S.
        • Chatur S.
        • et al.
        RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo.
        J Am Coll Cardiol. 2010; 55: 2580-2589
        • McLure K.G.
        • Gesner E.M.
        • Tsujikawa L.
        • Kharenko O.A.
        • Attwell S.
        • Campeau E.
        • et al.
        RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist.
        PLoS One. 2013; 8: e83190
        • Picaud S.
        • Wells C.
        • Felletar I.
        • Brotherton D.
        • Martin S.
        • Savitsky P.
        • et al.
        RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain.
        Proc Natl Acad Sci U S A. 2013; 110: 19754-19759
        • Nicholls S.J.
        • Gordon A.
        • Johansson J.
        • Wolski K.
        • Ballantyne C.M.
        • Kastelein J.J.
        • et al.
        Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial.
        J Am Coll Cardiol. 2011; 57: 1111-1119
        • Breda E.
        • Cavaghan M.K.
        • Toffolo G.
        • Polonsky K.S.
        • Cobelli C.
        Oral glucose tolerance test minimal model indexes of beta-cell function and insulin sensitivity.
        Diabetes. 2001; 50: 150-158
        • Patel S.
        • Drew B.G.
        • Nakhla S.
        • Duffy S.J.
        • Murphy A.J.
        • Barter P.J.
        • et al.
        Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes.
        J Am Coll Cardiol. 2009; 53: 962-971
        • Eugui J.
        • Logrono M.J.
        • Ruiz R.
        • Zugaza C.
        • Mirabel J.L.
        • Martinez C.
        Immunoturbidimetry of serum apolipoproteins A-I and B on the Cobas Bio centrifugal analyzer: method validation and reference values.
        Clin Biochem. 1994; 27: 310-315
        • Havel R.J.
        • Eder H.A.
        • Bragdon J.H.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
        J Clin Invest. 1955; 34: 1345-1353
        • Otvos J.D.
        • Mora S.
        • Shalaurova I.
        • Greenland P.
        • Mackey R.H.
        • Goff Jr., D.C.
        Clinical implications of discordance between low-density lipoprotein cholesterol and particle number.
        J Clin Lipidol. 2011; 5: 105-113
        • Oehlke J.
        • Brudel M.
        • Blasig I.E.
        Benzoylation of sugars, polyols and amino acids in biological fluids for high-performance liquid chromatographic analysis.
        J Chromatogr B Biomed Appl. 1994; 655: 105-111
        • Knudsen S.H.
        • Karstoft K.
        • Pedersen B.K.
        • van Hall G.
        • Solomon T.P.
        The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum.
        Physiol Rep. 2014; 2 (:e12114)
        • Steele R.
        Influences of glucose loading and of injected insulin on hepatic glucose output.
        Ann N Y Acad Sci. 1959; 82: 420-430
        • Proietto J.
        Estimation of glucose kinetics following an oral glucose load. Methods and applications.
        Horm Metab Res Suppl. 1990; 24: 25-30
        • Cobelli C.
        • Dalla Man C.
        • Toffolo G.
        • Basu R.
        • Vella A.
        • Rizza R.
        The oral minimal model method.
        Diabetes. 2014; 63: 1203-1213
        • Hochberg Y.
        • Benjamini Y.
        More powerful procedures for multiple significance testing.
        Stat Med. 1990; 9: 811-818
        • Roder P.V.
        • Geillinger K.E.
        • Zietek T.S.
        • Thorens B.
        • Koepsell H.
        • Daniel H.
        The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing.
        PLoS One. 2014; 9: e89977
        • Kujiraoka T.
        • Nanjee M.N.
        • Oka T.
        • Ito M.
        • Nagano M.
        • Cooke C.J.
        • et al.
        Effects of intravenous apolipoprotein A-I/phosphatidylcholine discs on LCAT, PLTP, and CETP in plasma and peripheral lymph in humans.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1653-1659
        • Jahagirdar R.
        • Zhang H.
        • Azhar S.
        • Tobin J.
        • Attwell S.
        • Yu R.
        • et al.
        A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice.
        Atherosclerosis. 2014; 236: 91-100
        • Khan A.A.
        • Straznicky N.E.
        • Nestel P.J.
        • Wong G.
        • Mundra P.A.
        • Mellett N.A.
        • et al.
        Effect of weight loss and exercise on the high-density lipoprotein (HDL) lipidome in individuals with metabolic syndrome (MetS).
        in: 83rd European Atherosclerosis Society (EAS) Congress. Glasgow, UK. 2015
        • Annema W.
        • von Eckardstein A.
        High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis.
        Circ J. 2013; 77: 2432-2448
        • Poti F.
        • Simoni M.
        • Nofer J.R.
        Atheroprotective role of high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P).
        Cardiovasc Res. 2014; 103: 395-404
        • Lucero D.
        • Svidirov D.
        • Freeman L.
        • Lopez G.I.
        • Fassio E.
        • Remaley A.T.
        • et al.
        Increased cholesterol efflux capacity in metabolic syndrome: relation with qualitative alterations in HDL and LCAT.
        Atherosclerosis. 2015; 242: 236-242
        • Boon J.
        • Hoy A.J.
        • Stark R.
        • Brown R.D.
        • Meex R.C.
        • Henstridge D.C.
        • et al.
        Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance.
        Diabetes. 2013; 62: 401-410