Consumption of red and processed meat and refined grains for 4weeks decreases insulin sensitivity in insulin-resistant adults: A randomized crossover study

Published:December 27, 2016DOI:https://doi.org/10.1016/j.metabol.2016.12.011

      Abstract

      Background

      Red and processed meat and refined grains are associated with an increased risk of type 2 diabetes. Interventions are limited. We hypothesized that a diet high in red and processed meat and refined grains (HMD) would decrease insulin sensitivity compared to a diet high in whole grains, nuts, dairy and legumes with no red meat (HWD).

      Methods

      Forty-nine subjects without diabetes [15 men and 34 women, age, 35.6 ± 15.7 years, body mass index (BMI), 27 ± 5.9 kg/m2] underwent two 4-week weight-stable dietary interventions in a randomized crossover design. The insulin sensitivity index (ISI) was calculated from the last 30 min of a continuous low-dose insulin (25 mU/kg·h) and glucose (4 mg/kg·min) infusion test (LDIGIT 120–150min) at the end of each diet.

      Results

      The population fell into two very discrete groups: those with a very low insulin response in the LDIGIT 120–150min on HMD (Group 1 < 56 pmol/L, n = 24), and those with relatively normal insulin responses (Group 2 > 56 pmol/L, n = 25). Group 2 had significantly higher insulin concentrations [(median and interquartile range) 153, 180 for HMD vs. 123, 149 pmol/L for HWD; P = 0.019] and glucose concentrations [(mean ± standard deviation) 7.4 ± 1.3 for HMD vs.6.7 ± 1.2 mmol/L for HWD; P = 0.05], resulting in a significantly decreased ISI [(median and interquartile range) 21.1, 34.2 for HMD vs. 31.6, 39.4 for HWD; P = 0.014] compared to HWD. Log ISI after HMD was significantly correlated with BMI (r = −0.5; P = 0.009), fat mass (r = −0.55; P = 0.004) and self-reported activity levels (r = −0.45; P = 0.024).

      Conclusions

      A dietary pattern high in red and processed meat and refined grains decreased insulin sensitivity compared to a dietary pattern high in whole grains, nuts, dairy products and legumes only in relatively insulin-resistant adults.

      Keywords

      Abbreviations:

      AGE (advanced glycation end product), AUC (area under the curve), BMI (body mass index), DBP (diastolic blood pressure), DXA (dual energy X-ray absorptiometry), GI (glycemic index), GLP-1 (glucagon like peptide-1), GL (glycemic load), Ginf (glucose infusion rate), Gss (steady-state blood glucose), HDL-C (high density lipoprotein cholesterol), HMD (a diet high in red and processed meat and refined grains), HOMA-IR (homeostasis model assessment of insulin resistance), hsCRP (high sensitivity C-reactive protein), HWD (a diet high in whole grains, nuts, dairy and legumes), iAUC (incremental area under the curve), IFG (impaired fasting glucose), IGT (impaired glucose tolerance), ISI (insulin sensitivity index), ISS (steady-state serum insulin), LDIGIT (low-dose insulin and glucose infusion test), NGT (normal glucose tolerance), OGTT (oral glucose tolerance test), PYY (peptide tyrosine-tyrosine), SBP (systolic blood pressure), SCFAs (short chain fatty acids), T2DM (type 2 diabetes mellitus)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Reaven G.M.
        Banting lecture 1988. Role of insulin resistance in human disease.
        Diabetes. 1988; 37: 1595-1607
        • Reaven G.M.
        Pathophysiology of insulin resistance in human disease.
        Physiol Rev. 1995; 75: 473-486
        • McEvoy C.T.
        • Cardwell C.R.
        • Woodside J.V.
        • Young I.S.
        • Hunter S.J.
        • McKinley M.C.
        A posteriori dietary patterns are related to risk of type 2 diabetes: findings from a systematic review and meta-analysis.
        J Acad Nutr Diet. 2014; 114: 1759-1775.e4
        • Feskens E.J.
        • Sluik D.
        • van Woudenbergh G.J.
        Meat consumption, diabetes, and its complications.
        Curr Diab Rep. 2013; 13: 298-306
        • Pan A.
        • Sun Q.
        • Bernstein A.M.
        • Schulze M.B.
        • Manson J.E.
        • Willett W.C.
        • et al.
        Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis.
        Am J Clin Nutr. 2011; 94: 1088-1096
        • Turner K.M.
        • Keogh J.B.
        • Clifton P.M.
        Red meat, dairy, and insulin sensitivity: a randomized crossover intervention study.
        Am J Clin Nutr. 2015; 101: 1173-1179
        • Navas-Carretero S.
        • Perez-Granados A.M.
        • Schoppen S.
        • Vaquero M.P.
        An oily fish diet increases insulin sensitivity compared to a red meat diet in young iron-deficient women.
        Br J Nutr. 2009; 102: 546-553
        • Mateo-Gallego R.
        • Perez-Calahorra S.
        • Cenarro A.
        • Bea A.M.
        • Andres E.
        • Horno J.
        • et al.
        Effect of lean red meat from lamb v. lean white meat from chicken on the serum lipid profile: a randomised, cross-over study in women.
        Br J Nutr. 2012; 107: 1403-1407
        • Chen M.
        • Sun Q.
        • Giovannucci E.
        • Mozaffarian D.
        • Manson J.E.
        • Willett W.C.
        • et al.
        Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis.
        BMC Med. 2014; 12: 215
        • Gijsbers L.
        • Ding E.L.
        • Malik V.S.
        • de Goede J.
        • Geleijnse J.M.
        • Soedamah-Muthu S.S.
        Consumption of dairy foods and diabetes incidence: a dose–response meta-analysis of observational studies.
        Am J Clin Nutr. 2016; 103: 1111-1124
        • Turner K.M.
        • Keogh J.B.
        • Clifton P.M.
        Dairy consumption and insulin sensitivity: a systematic review of short- and long-term intervention studies.
        Nutr Metab Cardiovasc Dis. 2015; 25: 3-8
        • Aune D.
        • Keum N.
        • Giovannucci E.
        • Fadnes L.T.
        • Boffetta P.
        • Greenwood D.C.
        • et al.
        Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose–response meta-analysis of prospective studies.
        BMJ. 2016; 353: i2716https://doi.org/10.1136/bmj.i2716
        • Zong B.
        Geng, Gao B, Alisa, Hu B, Frank, Sun B, Qi. Whole grain intake and mortality from all causes, cardiovascular disease, and cancer: a meta-analysis of prospective cohort studies.
        Circulation. 2016; 133: 2370-2380
        • Pereira M.A.
        • Jacobs Jr., D.R.
        • Pins J.J.
        • Raatz S.K.
        • Gross M.D.
        • Slavin J.L.
        • et al.
        Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults.
        Am J Clin Nutr. 2002; 75: 848-855
        • Lankinen M.
        • Schwab U.
        • Kolehmainen M.
        • Paananen J.
        • Poutanen K.
        • Mykkanen H.
        • et al.
        Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study.
        PLoS One. 2011; 6e22646
        • Brownlee I.A.
        • Moore C.
        • Chatfield M.
        • Richardson D.P.
        • Ashby P.
        • Kuznesof S.A.
        • et al.
        Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention.
        Br J Nutr. 2010; 104: 125-134
        • Tighe P.
        • Duthie G.
        • Vaughan N.
        • Brittenden J.
        • Simpson W.G.
        • Duthie S.
        • et al.
        Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial.
        Am J Clin Nutr. 2010; 92: 733-740
        • Salas-Salvado J.
        • Bullo M.
        • Babio N.
        • Martinez-Gonzalez M.A.
        • Ibarrola-Jurado N.
        • Basora J.
        • et al.
        Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial.
        Diabetes Care. 2011; 34: 14-19
        • Casas-Agustench P.
        • López-Uriarte P.
        • Bulló M.
        • Ros E.
        • Cabré-Vila J.
        • Salas-Salvadó J.
        Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome.
        Nutr Metab Cardiovasc Dis. 2011; 21: 126-135
        • Carter P.
        • Gray L.J.
        • Troughton J.
        • Khunti K.
        • Davies M.J.
        Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis.
        BMJ. 2010; 341: c4229
        • Cooper A.J.
        • Forouhi N.G.
        • Ye Z.
        • Buijsse B.
        • Arriola L.
        • Balkau B.
        • et al.
        Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis.
        Eur J Clin Nutr. 2012; 66: 1082-1092
        • Kim Y.
        • Keogh J.
        • Clifton P.
        A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus.
        Metabolism. 2015; 64: 768-779
        • National Health and Medical Research Council
        Dietary guidelines for Australian adults.
        Commonwealth of Australia, Canberra2003
        • Piatti P.
        • Monti L.
        • Caumo A.
        • Santambrogio G.
        • Magni F.
        • Galli-Kienle M.
        • et al.
        The continuous low dose insulin and glucose infusion test: a simplified and accurate method for the evaluation of insulin sensitivity and insulin secretion in population studies.
        J Clin Endocrinol Metab. 1995; 80: 34-40
        • Robertson M.D.
        • Bickerton A.S.
        • Dennis A.L.
        • Vidal H.
        • Frayn K.N.
        Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism.
        Am J Clin Nutr. 2005; 82: 559-567
        • Johnston K.L.
        • Thomas E.L.
        • Bell J.D.
        • Frost G.S.
        • Robertson M.D.
        Resistant starch improves insulin sensitivity in metabolic syndrome.
        Diabet Med. 2010; 27: 391-397
        • Maki K.C.
        • Pelkman C.L.
        • Finocchiaro E.T.
        • Kelley K.M.
        • Lawless A.L.
        • Schild A.L.
        • et al.
        Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men.
        J Nutr. 2012; 142: 717-723
        • Yoo J.Y.
        • Kim S.S.
        Probiotics and prebiotics: present status and future perspectives on metabolic disorders.
        Nutrients. 2016; 8: 173
        • Nilsson A.C.
        • Johansson-Boll E.V.
        • Bjorck I.M.
        Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects.
        Br J Nutr. 2015; 114: 899-907
        • Behall K.M.
        • Scholfield D.J.
        • Hallfrisch J.G.
        • Liljeberg-Elmstahl H.G.
        Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women.
        Diabetes Care. 2006; 29: 976-981
        • Hopping B.N.
        • Erber E.
        • Grandinetti A.
        • Verheus M.
        • Kolonel L.N.
        • Maskarinec G.
        Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii.
        J Nutr. 2010; 140: 68-74
        • Meyer K.A.
        • Kushi L.H.
        • Jacobs Jr., D.R.
        • Slavin J.
        • Sellers T.A.
        • Folsom A.R.
        Carbohydrates, dietary fiber, and incident type 2 diabetes in older women.
        Am J Clin Nutr. 2000; 71: 921-930
        • Chandalia M.
        • Garg A.
        • Lutjohann D.
        • von Bergmann K.
        • Grundy S.M.
        • Brinkley L.J.
        Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus.
        N Engl J Med. 2000; 342: 1392-1398
        • Fukagawa N.K.
        • Anderson J.W.
        • Hageman G.
        • Young V.R.
        • Minaker K.L.
        High-carbohydrate, high-fiber diets increase peripheral insulin sensitivity in healthy young and old adults.
        Am J Clin Nutr. 1990; 52: 524-528
        • Andersson A.
        • Tengblad S.
        • Karlstrom B.
        • Kamal-Eldin A.
        • Landberg R.
        • Basu S.
        • et al.
        Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects.
        J Nutr. 2007; 137: 1401-1407
        • Larsson S.C.
        • Wolk A.
        Magnesium intake and risk of type 2 diabetes: a meta-analysis.
        J Intern Med. 2007; 262: 208-214
        • Humphries S.
        • Kushner H.
        • Falkner B.
        Low dietary magnesium is associated with insulin resistance in a sample of young, nondiabetic black Americans.
        Am J Hypertens. 1999; 12: 747-756
        • Sluijs I.
        • Forouhi N.G.
        • Beulens J.W.
        • van der Schouw Y.T.
        • Agnoli C.
        • Arriola L.
        • et al.
        The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct study.
        Am J Clin Nutr. 2012; 96: 382-390
        • Jenkins D.J.
        • Kendall C.W.
        • Marchie A.
        • Josse A.R.
        • Nguyen T.H.
        • Faulkner D.A.
        • et al.
        Effect of almonds on insulin secretion and insulin resistance in nondiabetic hyperlipidemic subjects: a randomized controlled crossover trial.
        Metabolism. 2008; 57: 882-887
        • Li S.C.
        • Liu Y.H.
        • Liu J.F.
        • Chang W.H.
        • Chen C.M.
        • Chen C.Y.
        Almond consumption improved glycemic control and lipid profiles in patients with type 2 diabetes mellitus.
        Metabolism. 2011; 60: 474-479
        • Salas-Salvado J.
        • Fernandez-Ballart J.
        • Ros E.
        • Martinez-Gonzalez M.A.
        • Fito M.
        • Estruch R.
        • et al.
        Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial.
        Arch Intern Med. 2008; 168: 2449-2458
        • Tapsell L.C.
        • Batterham M.J.
        • Teuss G.
        • Tan S.Y.
        • Dalton S.
        • Quick C.J.
        • et al.
        Long-term effects of increased dietary polyunsaturated fat from walnuts on metabolic parameters in type II diabetes.
        Eur J Clin Nutr. 2009; 63: 1008-1015
        • Coelho O.G.
        • da Silva B.P.
        • Rocha D.M.
        • Lopes L.L.
        • Alfenas R.C.
        Polyunsaturated fatty acids and type 2 diabetes: impact on the glycemic control mechanism.
        Crit Rev Food Sci Nutr. 2016; ([0], http://dx.doi.org/10.1080/10408398.2015.1130016)
        • Bhupathiraju S.N.
        • Tobias D.K.
        • Malik V.S.
        • Pan A.
        • Hruby A.
        • Manson J.E.
        • et al.
        Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis.
        Am J Clin Nutr. 2014; 100: 218-232
        • Sakurai M.
        • Nakamura K.
        • Miura K.
        • Takamura T.
        • Yoshita K.
        • Morikawa Y.
        • et al.
        Dietary glycemic index and risk of type 2 diabetes mellitus in middle-aged Japanese men.
        Metabolism. 2012; 61: 47-55
        • Tessier F.J.
        • Birlouez-Aragon I.
        Health effects of dietary Maillard reaction products: the results of ICARE and other studies.
        Amino Acids. 2012; 42: 1119-1131
        • Sluijs I.
        • Beulens J.W.
        • van der Schouw Y.T.
        • Buckland G.
        • Kuijsten A.
        • Schulze M.B.
        • et al.
        Dietary glycemic index, glycemic load, and digestible carbohydrate intake are not associated with risk of type 2 diabetes in eight European countries.
        J Nutr. 2013; 143: 93-99
        • Lau C.
        • Faerch K.
        • Glumer C.
        • Tetens I.
        • Pedersen O.
        • Carstensen B.
        • et al.
        Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance: the Inter99 study.
        Diabetes Care. 2005; 28: 1397-1403
        • Micha R.
        • Wallace S.K.
        • Mozaffarian D.
        Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus a systematic review and meta-analysis.
        Circulation. 2010; 121: 2271-2283
        • Mannisto S.
        • Kontto J.
        • Kataja-Tuomola M.
        • Albanes D.
        • Virtamo J.
        High processed meat consumption is a risk factor of type 2 diabetes in the alpha-tocopherol, Beta-carotene cancer prevention study.
        Br J Nutr. 2010; 103: 1817-1822
        • Rajpathak S.N.
        • Crandall J.P.
        • Wylie-Rosett J.
        • Kabat G.C.
        • Rohan T.E.
        • Hu F.B.
        The role of iron in type 2 diabetes in humans.
        Biochim Biophys Acta Gen Subj. 2009; 1790: 671-681
        • Benatar J.R.
        • Jones E.
        • White H.
        • Stewart R.A.
        A randomized trial evaluating the effects of change in dairy food consumption on cardio-metabolic risk factors.
        Eur J Prev Cardiol. 2014; 21: 1376-1386
        • Stancliffe R.A.
        • Thorpe T.
        • Zemel M.B.
        Dairy attenuates oxidative and inflammatory stress in metabolic syndrome.
        Am J Clin Nutr. 2011; 94: 422-430
        • Uusitupa M.
        • Hermansen K.
        • Savolainen M.J.
        • Schwab U.
        • Kolehmainen M.
        • Brader L.
        • et al.
        Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome — a randomized study (SYSDIET).
        J Intern Med. 2013; 274: 52-66