Advertisement

Sleep devices: wearables and nearables, informational and interventional, consumer and clinical

  • Matt T. Bianchi
    Correspondence
    Wang 7 Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States.
    Affiliations
    Neurology Department, Massachusetts General Hospital, Wang 720, Boston, MA 02114, United States
    Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, United States
    Search for articles by this author
Published:October 25, 2017DOI:https://doi.org/10.1016/j.metabol.2017.10.008

      Abstract

      The field of sleep is in many ways ideally positioned to take full advantage of advancements in technology and analytics that is fueling the mobile health movement. Combining hardware and software advances with increasingly available big datasets that contain scored data obtained under gold standard sleep laboratory conditions completes the trifecta of this perfect storm. This review highlights recent developments in consumer and clinical devices for sleep, emphasizing the need for validation at multiple levels, with the ultimate goal of using personalized data and advanced algorithms to provide actionable information that will improve sleep health.

      Abbreviations:

      AASM (American Academy of Sleep Medicine), BCG (ballistocardiogram), CPC (cardiopulmonary coupling), EEG (electroencephalogram), EMG (electromyogram), EOG (electrooculogram), ECG (electrocardiogram), FDA (Food and Drug Administration), HFC (high frequency coupling), HSAT (home sleep apnea test), LFC (low frequency coupling), OSA (obstructive sleep apnea), NREM (non-REM), PAP (positive airway pressure), PSG (polysomnography), REM (rapid eye movement)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sadeh A.
        The role and validity of actigraphy in sleep medicine: an update.
        Sleep Med Rev. 2011; 15: 259-267
        • Russo K.
        • Goparaju B.
        • Bianchi M.T.
        Consumer sleep monitors: is there a baby in the bathwater?.
        Nat Sci Sleep. 2015; 7: 147-157
        • Ko P.T.
        • Kientz J.A.
        • Choe E.K.
        • Kay M.
        • Landis C.A.
        • Watson N.F.
        Consumer sleep technologies: a review of the landscape.
        J Clin Sleep Med. 2015; 11: 1455-1461
        • Behar J.
        • Roebuck A.
        • Domingos J.S.
        • Gederi E.
        • Clifford G.D.
        A review of current sleep screening applications for smartphones.
        Physiol Meas. 2013; 34: R29-46
        • Kelly J.M.
        • Strecker R.E.
        • Bianchi M.T.
        Recent developments in home sleep-monitoring devices.
        ISRN Neurol. 2012; 2012: 768794
        • Stein P.K.
        • Pu Y.
        Heart rate variability, sleep and sleep disorders.
        Sleep Med Rev. 2012; 16: 47-66
        • Younes M.
        The case for using digital EEG analysis in clinical sleep medicine.
        Sleep Sci Pract. 2017; 1
        • Sun H.
        • Jia J.
        • Goparaju B.
        • Huang G.B.
        • Bianchi M.T.
        • Westover M.B.
        Large-scale automated sleep staging.
        ([submitted for publication])2017
        • Stephansen J.B.
        • Ambati A.
        • Leary E.B.
        • Moore H.E.
        • Carrillo O.
        • Lin L.
        • et al.
        The use of neural networks in the analysis of sleep stages and the diagnosis of narcolepsy.
        ([ArXiv])2017
        • Biswal S.
        • Kulas J.
        • Sun H.
        • Goparaju B.
        • Westover M.B.
        • Bianchi M.T.
        • et al.
        SLEEPNET: Automated sleep staging system via deep learning.
        ([ArXiv])2017
        • Dean D.A.
        • Goldberger A.L.
        • Mueller R.
        • Kim M.
        • Rueschman M.
        • Mobley D.
        • et al.
        Scaling up scientific discovery in sleep medicine: the national sleep research resource.
        Sleep. 2016; 39: 1151-1164
        • Morgenthaler T.
        • Alessi C.
        • Friedman L.
        • Owens J.
        • Kapur V.
        • Boehlecke B.
        • et al.
        Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007.
        Sleep. 2007; 30: 519-529
        • Lim A.S.
        • Yu L.
        • Costa M.D.
        • Buchman A.S.
        • Bennett D.A.
        • Leurgans S.E.
        • et al.
        Quantification of the fragmentation of rest-activity patterns in elderly individuals using a state transition analysis.
        Sleep. 2011; 34: 1569-1581
        • Hu K.
        • Riemersma-van der Lek R.F.
        • Patxot M.
        • Li P.
        • Shea S.A.
        • Scheer F.A.
        • et al.
        Progression of dementia assessed by temporal correlations of physical activity: results from a 3.5-year, longitudinal randomized controlled trial.
        Sci Rep. 2016; 6: 27742
        • Aserinsky E.
        • Kleitman N.
        Regularly occurring periods of eye motility, and concomitant phenomena, during sleep.
        Science. 1953; 118: 273-274
        • Sano A.
        • Picard R.W.
        Toward a taxonomy of autonomic sleep patterns with electrodermal activity.
        in: Conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference. 2011. 2011: 777-780
        • Sano A.
        • Picard R.W.
        • Stickgold R.
        Quantitative analysis of wrist electrodermal activity during sleep.
        Int J Psychophysiol. 2014; 94: 382-389
        • Weiss A.R.
        • Johnson N.L.
        • Berger N.A.
        • Redline S.
        Validity of activity-based devices to estimate sleep.
        J Clin Sleep Med. 2010; 6: 336-342
        • Bohning N.
        • Schultheiss B.
        • Eilers S.
        • Penzel T.
        • Bohning W.
        • Schmittendorf E.
        Comparability of pulse oximeters used in sleep medicine for the screening of OSA.
        Physiol Meas. 2010; 31: 875-888
        • Swihart B.J.
        • Caffo B.
        • Bandeen-Roche K.
        • Punjabi N.M.
        Characterizing sleep structure using the hypnogram.
        J Clin Sleep Med. 2008; 4: 349-355
        • Laffan A.
        • Caffo B.
        • Swihart B.J.
        • Punjabi N.M.
        Utility of sleep stage transitions in assessing sleep continuity.
        Sleep. 2010; 33: 1681-1686
        • Norman R.G.
        • Scott M.A.
        • Ayappa I.
        • Walsleben J.A.
        • Rapoport D.M.
        Sleep continuity measured by survival curve analysis.
        Sleep. 2006; 29: 1625-1631
        • Bianchi M.T.
        • Cash S.S.
        • Mietus J.
        • Peng C.K.
        • Thomas R.
        Obstructive sleep apnea alters sleep stage transition dynamics.
        PLoS One. 2010; 5e11356
        • Saline A.
        • Goparaju B.
        • Bianchi M.T.
        Sleep fragmentation does not explain misperception of latency or total sleep time.
        J Clin Sleep Med. 2016; 12: 1245-1255
        • Sun H.
        • Jia J.
        • Goparaju B.
        • Huang G.
        • Sourina O.
        • Bianchi M.T.
        • et al.
        Large-scale automated sleep staging.
        Sleep. 2017; 40
        • Kudesia R.S.
        • Bianchi M.T.
        Decreased nocturnal awakenings in young adults performing Bikram yoga: a low-constraint home sleep monitoring study.
        ISRN Neurol. 2012; 2012: 153745
        • Bianchi M.T.
        Consumer sleep apps: when it comes to the big picture, It's all about the frame.
        J Clin Sleep Med. 2015; 11: 695-696
        • Romero K.
        • Goparaju B.
        • Russo K.
        • Westover M.B.
        • Bianchi M.T.
        Alternative remedies for insomnia: a proposed method for personalized therapeutic trials.
        Nat Sci Sleep. 2017; 9: 97-108
        • Collop N.A.
        • Anderson W.M.
        • Boehlecke B.
        • Claman D.
        • Goldberg R.
        • Gottlieb D.J.
        • et al.
        Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable monitoring task force of the American Academy of Sleep Medicine.
        J Clin Sleep Med. 2007; 3: 737-747
        • Kapur V.K.
        • Auckley D.H.
        • Chowdhuri S.
        • Kuhlmann D.C.
        • Mehra R.
        • Ramar K.
        • et al.
        Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline.
        J Clin Sleep Med. 2017; 13: 479-504
        • Collop N.A.
        • Tracy S.L.
        • Kapur V.
        • Mehra R.
        • Kuhlmann D.
        • Fleishman S.A.
        • et al.
        Obstructive sleep apnea devices for out-of-center (OOC) testing: technology evaluation.
        J Clin Sleep Med. 2011; 7: 531-548
        • Pietzsch J.B.
        • Garner A.
        • Cipriano L.E.
        • Linehan J.H.
        An integrated health-economic analysis of diagnostic and therapeutic strategies in the treatment of moderate-to-severe obstructive sleep apnea.
        Sleep. 2011; 34: 695-709
        • Moro M.
        • Westover M.B.
        • Kelly J.
        • Bianchi M.T.
        Decision modeling in sleep apnea: the critical roles of pretest probability, cost of untreated obstructive sleep apnea, and time horizon.
        J Clin Sleep Med. 2016; 12: 409-418
        • Bianchi M.T.
        • Goparaju B.
        Potential underestimation of sleep apnea severity by at-home kits: rescoring in-laboratory polysomnography without sleep staging.
        J Clin Sleep Med. 2017; 13: 551-555
        • Harvey A.G.
        • Tang N.K.
        (Mis)perception of sleep in insomnia: a puzzle and a resolution.
        Psychol Bull. 2012; 138: 77-101
        • Sands S.A.
        • Owens R.L.
        • Malhotra A.
        New approaches to diagnosing sleep-disordered breathing.
        Sleep Med Clin. 2016; 11: 143-152
        • Zinchuk A.V.
        • Gentry M.J.
        • Concato J.
        • Yaggi H.K.
        Phenotypes in obstructive sleep apnea: a definition, examples and evolution of approaches.
        Sleep Med Rev. 2017; 35: 113-123
        • Edwards B.A.
        • Eckert D.J.
        • McSharry D.G.
        • Sands S.A.
        • Desai A.
        • Kehlmann G.
        • et al.
        Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea.
        Am J Respir Crit Care Med. 2014; 190: 1293-1300
        • de Vries N.
        Positional therapy in obstructive sleep apnea.
        Springer, 2014
        • Thomas R.J.
        • Mietus J.E.
        • Peng C.K.
        • Goldberger A.L.
        An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep.
        Sleep. 2005; 28: 1151-1161
        • Thomas R.J.
        • Mietus J.E.
        • Peng C.K.
        • Gilmartin G.
        • Daly R.W.
        • Goldberger A.L.
        • et al.
        Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method.
        Sleep. 2007; 30: 1756-1769
        • Reiter J.
        • Zleik B.
        • Bazalakova M.
        • Mehta P.
        • Thomas R.J.
        Residual events during use of CPAP: prevalence, predictors, and detection accuracy.
        J Clin Sleep Med. 2016; 12: 1153-1158
        • Thomas R.J.
        • Bianchi M.T.
        Urgent need to improve PAP management: the devil is in two (fixable) details.
        J Clin Sleep Med. 2017; 13: 657-664
        • Phillips C.L.
        • Yang Q.
        • Williams A.
        • Roth M.
        • Yee B.J.
        • Hedner J.A.
        • et al.
        The effect of short-term withdrawal from continuous positive airway pressure therapy on sympathetic activity and markers of vascular inflammation in subjects with obstructive sleep apnoea.
        J Sleep Res. 2007; 16: 217-225
        • Kohler M.
        • Stoewhas A.C.
        • Ayers L.
        • Senn O.
        • Bloch K.E.
        • Russi E.W.
        • et al.
        Effects of continuous positive airway pressure therapy withdrawal in patients with obstructive sleep apnea: a randomized controlled trial.
        Am J Respir Crit Care Med. 2011; 184: 1192-1199
        • Young L.R.
        • Taxin Z.H.
        • Norman R.G.
        • Walsleben J.A.
        • Rapoport D.M.
        • Ayappa I.
        Response to CPAP withdrawal in patients with mild versus severe obstructive sleep apnea/hypopnea syndrome.
        Sleep. 2013; 36: 405-412
        • Rossi V.A.
        • Schwarz E.I.
        • Bloch K.E.
        • Stradling J.R.
        • Kohler M.
        Is continuous positive airway pressure necessarily an everyday therapy in patients with obstructive sleep apnoea?.
        Eur Respir J. 2014; 43: 1387-1393
        • Bianchi M.T.
        • Alameddine Y.
        • Mojica J.
        Apnea burden: efficacy versus effectiveness in patients using positive airway pressure.
        Sleep Med. 2014; 15: 1579-1581
        • Boyd S.B.
        • Walters A.S.
        Effectiveness of treatment apnea-hypopnea index: a mathematical estimate of the true apnea-hypopnea index in the home setting.
        J Oral Maxillofac Surg. 2013; 71: 351-357
        • Boyd S.B.
        • Upender R.
        • Walters A.S.
        • Goodpaster R.L.
        • Stanley J.J.
        • Wang L.
        • et al.
        Effective apnea-hypopnea index (“effective AHI”): a new measure of effectiveness for positive airway pressure therapy.
        Sleep. 2016; 39: 1961-1972
        • Riaz M.
        • Certal V.
        • Nigam G.
        • Abdullatif J.
        • Zaghi S.
        • Kushida C.A.
        • et al.
        Nasal expiratory positive airway pressure devices (Provent) for OSA: a systematic review and meta-analysis.
        Sleep Disorders. 2015; 2015: 734798
        • Chang E.T.
        • Fernandez-Salvador C.
        • Giambo J.
        • Nesbitt B.
        • Liu S.Y.
        • Capasso R.
        • et al.
        Tongue retaining devices for obstructive sleep apnea: a systematic review and meta-analysis.
        Am J Otolaryngol. 2017; 38: 272-278
        • Sutherland K.
        • Vanderveken O.M.
        • Tsuda H.
        • Marklund M.
        • Gagnadoux F.
        • Kushida C.A.
        • et al.
        Oral appliance treatment for obstructive sleep apnea: an update.
        J Clin Sleep Med. 2014; 10: 215-227
        • Bignold J.J.
        • Deans-Costi G.
        • Goldsworthy M.R.
        • Robertson C.A.
        • McEvoy D.
        • Catcheside P.G.
        • et al.
        Poor long-term patient compliance with the tennis ball technique for treating positional obstructive sleep apnea.
        J Clin Sleep Med. 2009; 5: 428-430
        • Levendowski D.J.
        • Veljkovic B.
        • Seagraves S.
        • Westbrook P.R.
        Capability of a neck worn device to measure sleep/wake, airway position, and differentiate benign snoring from obstructive sleep apnea.
        J Clin Monit Comput. 2015; 29: 53-64
        • Levendowski D.J.
        • Seagraves S.
        • Popovic D.
        • Westbrook P.R.
        Assessment of a neck-based treatment and monitoring device for positional obstructive sleep apnea.
        J Clin Sleep Med. 2014; 10: 863-871
        • Buysse D.J.
        Insomnia.
        JAMA. 2013; 309: 706-716
        • Trauer J.M.
        • Qian M.Y.
        • Doyle J.S.
        • Rajaratnam S.M.
        • Cunnington D.
        Cognitive behavioral therapy for chronic insomnia: a systematic review and meta-analysis.
        Ann Intern Med. 2015; 163: 191-204
        • Kripke D.F.
        Hypnotic drug risks of mortality, infection, depression, and cancer: but lack of benefit.
        F1000Res. 2016; 5: 918
        • Tang N.K.
        • Harvey A.G.
        Altering misperception of sleep in insomnia: behavioral experiment versus verbal feedback.
        J Consult Clin Psychol. 2006; 74: 767-776
        • Russo K.
        • Bianchi M.T.
        Consumer sleep monitor-based feedback for insomnia: Randomized cross-over pilot study.
        in: APSS 2016, poster abstract. 2016
        • Leach M.J.
        • Page A.T.
        Herbal medicine for insomnia: a systematic review and meta-analysis.
        Sleep Med Rev. 2015; 24: 1-12
        • Sarris J.
        • Byrne G.J.
        A systematic review of insomnia and complementary medicine.
        Sleep Med Rev. 2011; 15: 99-106
        • Fernandez-Mendoza J.
        • Shea S.
        • Vgontzas A.N.
        • Calhoun S.L.
        • Liao D.
        • Bixler E.O.
        Insomnia and incident depression: role of objective sleep duration and natural history.
        J Sleep Res. 2015; 24: 390-398
        • Vgontzas A.N.
        • Fernandez-Mendoza J.
        • Liao D.
        • Bixler E.O.
        Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder.
        Sleep Med Rev. 2013; 17: 241-254
        • Bianchi M.T.
        • Goparaju B.
        • Moro M.
        Sleep apnea in patients reporting insomnia or restless legs symptoms.
        Acta Neurol Scand. 2016; 133: 61-67
        • Krakow B.
        • Ulibarri V.A.
        Prevalence of sleep breathing complaints reported by treatment-seeking chronic insomnia disorder patients on presentation to a sleep medical center: a preliminary report.
        Sleep Breath. 2013; 17: 317-322
        • Luyster F.S.
        • Buysse D.J.
        • Strollo Jr., P.J.
        Comorbid insomnia and obstructive sleep apnea: challenges for clinical practice and research.
        J Clin Sleep Med. 2010; 6: 196-204
        • Wickwire E.M.
        • Collop N.A.
        Insomnia and sleep-related breathing disorders.
        Chest. 2010; 137: 1449-1463
        • McHill A.W.
        • Wright Jr., K.P.
        Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease.
        Obes Rev. 2017; 18: 15-24
        • Gileles-Hillel A.
        • Kheirandish-Gozal L.
        • Gozal D.
        Biological plausibility linking sleep apnoea and metabolic dysfunction.
        Nat Rev Endocrinol. 2016; 12: 290-298
        • Koren D.
        • Dumin M.
        • Gozal D.
        Role of sleep quality in the metabolic syndrome.
        Diabetes Metab Syndr Obes. 2016; 9: 281-310
        • Price K.
        • Bird S.R.
        • Lythgo N.
        • Raj I.S.
        • Wong J.Y.
        • Lynch C.
        Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running.
        J Med Eng Technol. 2017; 41: 208-215
        • Prokopenko I.
        • Langenberg C.
        • Florez J.C.
        • Saxena R.
        • Soranzo N.
        • Thorleifsson G.
        • et al.
        Variants in MTNR1B influence fasting glucose levels.
        Nat Genet. 2009; 41: 77-81
        • Tan E.
        • Scott E.M.
        Circadian rhythms, insulin action, and glucose homeostasis.
        Curr Opin Clin Nutr Metab Care. 2014; 17: 343-348