Advertisement

Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes

  • Sirimon Reutrakul
    Correspondence
    Corresponding author at: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott St, Suite 625E, Chicago, IL, USA.
    Affiliations
    Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
    Search for articles by this author
  • Eve Van Cauter
    Affiliations
    The Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism and Sleep, Metabolism and Health Center, Department of Medicine, The University of Chicago, Chicago, IL, USA
    Search for articles by this author

      Highlights

      • Experimental sleep restriction led to changes in appetite regulating hormones and increased hunger.
      • Caloric intake often exceeded slight increase in energy expenditure, leading to positive energy balance and weight gain.
      • Sleep restriction led to increased insulin resistance and elevated diabetes risk, through multiple mechanistic pathways.
      • Multiple pathways are involved in alterations of glucose metabolism.
      • Limited available data suggested that sleep fragmentation led to alterations in glucose metabolism.
      • Behavioral sleep extension and sleep quality improvement may help reduce obesity and diabetes risk.

      Abstract

      A large body of epidemiologic evidence has linked insufficient sleep duration and quality to the risk of obesity, insulin resistance and type 2 diabetes. To address putative causal mechanisms, this review focuses on laboratory interventions involving several nights of experimental sleep restriction, fragmentation or extension and examining metabolically relevant outcomes. Sleep restriction has been consistently shown to increase hunger, appetite and food intake, with the increase in caloric intake in excess of the energy requirements of extended wakefulness. Findings regarding decreases in hormones promoting satiety or increases in hormones promoting hunger have been less consistent, possibly because of confounding effects of changes in adiposity when energy intake was not controlled and sampling protocols that did not cover the entire 24-h cycle. Imaging studies revealed alterations in neuronal activity of brain regions involved in food reward. An adverse impact of experimental sleep restriction on insulin resistance, leading to reduced glucose tolerance and increased diabetes risk, has been well-documented. There is limited evidence indicating that sleep fragmentation without reduction in sleep duration also results in a reduction in insulin sensitivity. The adverse metabolic outcomes of sleep disturbances appear to involve multiple mechanistic pathways acting in concert. Emerging evidence supports the benefits of behavioral, but not pharmacological, sleep extension on appetite and glucose metabolism. Further research should focus on the feasibility and efficacy of strategies to optimize sleep duration and quality on obesity and diabetes risk in at-risk populations as well as those with established diseases. Further work is needed to identify mechanistic pathways.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • National Sleep Foundation
        Sleep in America poll.
        (Available from)
        • Cappuccio F.P.
        • Taggart F.M.
        • Kandala N.B.
        • Currie A.
        • Peile E.
        • Stranges S.
        • et al.
        Meta-analysis of short sleep duration and obesity in children and adults.
        Sleep. 2008; 31: 619-626
        • Anothaisintawee T.
        • Reutrakul S.
        • Van Cauter E.
        • Thakkinstian A.
        Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis.
        Sleep Med Rev. 2015; 30: 11-24
        • Cassidy R.M.
        • Tong Q.
        Hunger and satiety gauge reward sensitivity.
        Front Endocrinol (Lausanne). 2017; 8: 104
        • Mullington J.M.
        • Chan J.L.
        • Van Dongen H.P.
        • Szuba M.P.
        • Samaras J.
        • Price N.J.
        • et al.
        Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men.
        J Neuroendocrinol. 2003; 15: 851-854
        • Guilleminault C.
        • Powell N.B.
        • Martinez S.
        • Kushida C.
        • Raffray T.
        • Palombini L.
        • et al.
        Preliminary observations on the effects of sleep time in a sleep restriction paradigm.
        Sleep Med. 2003; 4: 177-184
        • Spiegel K.
        • Leproult R.
        • L'hermite-Baleriaux M.
        • Copinschi G.
        • Penev P.D.
        • Van Cauter E.
        Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin.
        J Clin Endocrinol Metab. 2004; 89: 5762-5771
        • Spiegel K.
        • Tasali E.
        • Penev P.
        • Van Cauter E.
        Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite.
        Ann Intern Med. 2004; 141: 846-850
        • Bosy-Westphal A.
        • Hinrichs S.
        • Jauch-Chara K.
        • Hitze B.
        • Later W.
        • Wilms B.
        • et al.
        Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women.
        Obes Facts. 2008; 1: 266-273
        • Markwald R.R.
        • Melanson E.L.
        • Smith M.R.
        • Higgins J.
        • Perreault L.
        • Eckel R.H.
        • et al.
        Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain.
        Proc Natl Acad Sci U S A. 2013; 110: 5695-5700
        • Omisade A.
        • Buxton O.M.
        • Rusak B.
        Impact of acute sleep restriction on cortisol and leptin levels in young women.
        Physiol Behav. 2010; 99: 651-656
        • Simpson N.S.
        • Banks S.
        • Dinges D.F.
        Sleep restriction is associated with increased morning plasma leptin concentrations, especially in women.
        Biol Res Nurs. 2010; 12: 47-53
        • Schmid S.M.
        • Hallschmid M.
        • Jauch-Chara K.
        • Wilms B.
        • Benedict C.
        • Lehnert H.
        • et al.
        Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men.
        Am J Clin Nutr. 2009; 90: 1476-1482
        • Calvin A.D.
        • Carter R.E.
        • Adachi T.
        • Macedo P.G.
        • Albuquerque F.N.
        • van der Walt C.
        • et al.
        Effects of experimental sleep restriction on caloric intake and activity energy expenditure.
        Chest. 2013; 144: 79-86
        • Nedeltcheva A.V.
        • Kilkus J.M.
        • Imperial J.
        • Kasza K.
        • Schoeller D.A.
        • Penev P.D.
        Sleep curtailment is accompanied by increased intake of calories from snacks.
        Am J Clin Nutr. 2009; 89: 126-133
        • Broussard J.L.
        • Kilkus J.M.
        • Delebecque F.
        • Abraham V.
        • Day A.
        • Whitmore H.R.
        • et al.
        Elevated ghrelin predicts food intake during experimental sleep restriction.
        Obesity (Silver Spring). 2016; 24: 132-138
        • Hanlon E.C.
        • Tasali E.
        • Leproult R.
        • Stuhr K.L.
        • Doncheck E.
        • de Wit Harriet
        • et al.
        Sleep restriction enhances the daily rhythm of circulating levels of endocannabinoid 2-arachidonoylglycerol.
        Sleep. 2016; 39: 653-664
        • Spiegel K.
        • Tasali E.
        • Leproult R.
        • Scherberg N.
        • Van Cauter E.
        Twenty-four-hour profiles of acylated and total ghrelin: relationship with glucose levels and impact of time of day and sleep.
        J Clin Endocrinol Metab. 2011; 96: 486-493
        • Nedeltcheva A.V.
        • Kilkus J.M.
        • Imperial J.
        • Schoeller D.A.
        • Penev P.D.
        Insufficient sleep undermines dietary efforts to reduce adiposity.
        Ann Intern Med. 2010; 153: 435-441
        • St-Onge M.P.
        • O'Keeffe M.
        • Roberts A.L.
        • RoyChoudhury A.
        • Laferrere B.
        Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women.
        Sleep. 2012; 35: 1503-1510
        • Klingenberg L.
        • Chaput J.P.
        • Holmback U.
        • Jennum P.
        • Astrup A.
        • Sjodin A.
        Sleep restriction is not associated with a positive energy balance in adolescent boys.
        Am J Clin Nutr. 2012; 96: 240-248
        • Hart C.N.
        • Carskadon M.A.
        • Demos K.E.
        • Van Reen E.
        • Sharkey K.M.
        • Raynor H.A.
        • et al.
        Acute changes in sleep duration on eating behaviors and appetite-regulating hormones in overweight/obese adults.
        Behav Sleep Med. 2015; 13: 424-436
        • Capers P.L.
        • Fobian A.D.
        • Kaiser K.A.
        • Borah R.
        • Allison D.B.
        A systematic review and meta-analysis of randomized controlled trials of the impact of sleep duration on adiposity and components of energy balance.
        Obes Rev. 2015; 16: 771-782
        • Baggio L.L.
        • Drucker D.J.
        Biology of incretins: GLP-1 and GIP.
        Gastroenterology. 2007; 132: 2131-2157
        • Steinert R.E.
        • Feinle-Bisset C.
        • Asarian L.
        • Horowitz M.
        • Beglinger C.
        • Geary N.
        Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB.
        Physiol Rev. 2017; 97: 411-463
        • Hibi M.
        • Kubota C.
        • Mizuno T.
        • Aritake S.
        • Mitsui Y.
        • Katashima M.
        • et al.
        Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial.
        Sci Rep. 2017; 7: 39640
        • Jager G.
        • Witkamp R.F.
        The endocannabinoid system and appetite: relevance for food reward.
        Nutr Res Rev. 2014; 27: 172-185
        • Hanlon E.C.
        • Tasali E.
        • Leproult R.
        • Stuhr K.L.
        • Doncheck E.
        • de Wit H.
        • et al.
        Circadian rhythm of circulating levels of the endocannabinoid 2-arachidonoylglycerol.
        J Clin Endocrinol Metab. 2015; 100: 220-226
        • Cedernaes J.
        • Fanelli F.
        • Fazzini A.
        • Pagotto U.
        • Broman J.E.
        • Vogel H.
        • et al.
        Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans.
        Psychoneuroendocrinology. 2016; 74: 258-268
        • Reynolds A.C.
        • Dorrian J.
        • Liu P.Y.
        • Van Dongen H.P.
        • Wittert G.A.
        • Harmer L.J.
        • et al.
        Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men.
        PLoS ONE. 2012; 7e41218
        • van Leeuwen W.M.
        • Hublin C.
        • Sallinen M.
        • Harma M.
        • Hirvonen A.
        • Porkka-Heiskanen T.
        Prolonged sleep restriction affects glucose metabolism in healthy young men.
        Int J Endocrinol. 2010; 2010: 108641
        • Benedict C.
        • Hallschmid M.
        • Lassen A.
        • Mahnke C.
        • Schultes B.
        • Schioth H.B.
        • et al.
        Acute sleep deprivation reduces energy expenditure in healthy men.
        Am J Clin Nutr. 2011; 93: 1229-1236
        • Benedict C.
        • Brooks S.J.
        • O'Daly O.G.
        • Almen M.S.
        • Morell A.
        • Aberg K.
        • et al.
        Acute sleep deprivation enhances the brain's response to hedonic food stimuli: an fMRI study.
        J Clin Endocrinol Metab. 2012; 97: E443-E447
        • Brondel L.
        • Romer M.A.
        • Nougues P.M.
        • Touyarou P.
        • Davenne D.
        Acute partial sleep deprivation increases food intake in healthy men.
        Am J Clin Nutr. 2010; 91: 1550-1559
        • Fang Z.
        • Spaeth A.M.
        • Ma N.
        • Zhu S.
        • Hu S.
        • Goel N.
        • et al.
        Altered salience network connectivity predicts macronutrient intake after sleep deprivation.
        Sci Rep. 2015; 5: 8215
        • Gonnissen H.K.
        • Hursel R.
        • Rutters F.
        • Martens E.A.
        • Westerterp-Plantenga M.S.
        Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men.
        Br J Nutr. 2013; 109: 748-756
        • Greer S.M.
        • Goldstein A.N.
        • Walker M.P.
        The impact of sleep deprivation on food desire in the human brain.
        Nat Commun. 2013; 4: 2259
        • Spaeth A.M.
        • Dinges D.F.
        • Goel N.
        Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults.
        Sleep. 2013; 36: 981-990
        • Spaeth A.M.
        • Dinges D.F.
        • Goel N.
        Resting metabolic rate varies by race and by sleep duration.
        Obesity (Silver Spring). 2015; 23: 2349-2356
        • Schmid S.M.
        • Hallschmid M.
        • Jauch-Chara K.
        • Born J.
        • Schultes B.
        A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men.
        J Sleep Res. 2008; 17: 331-334
        • McNeil J.
        • St-Onge M.P.
        Increased energy intake following sleep restriction in men and women: a one-size-fits-all conclusion?.
        Obesity (Silver Spring). 2017; 25: 989-992
        • St-Onge M.P.
        • McReynolds A.
        • Trivedi Z.B.
        • Roberts A.L.
        • Sy M.
        • Hirsch J.
        Sleep restriction leads to increased activation of brain regions sensitive to food stimuli.
        Am J Clin Nutr. 2012; 95: 818-824
        • St-Onge M.P.
        • Wolfe S.
        • Sy M.
        • Shechter A.
        • Hirsch J.
        Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals.
        Int J Obes (Lond). 2014; 38: 411-416
        • St-Onge M.P.
        • Roberts A.L.
        • Chen J.
        • Kelleman M.
        • O'Keeffe M.
        • RoyChoudhury A.
        • et al.
        Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals.
        Am J Clin Nutr. 2011; 94: 410-416
        • Shechter A.
        • Rising R.
        • Albu J.B.
        • St-Onge M.P.
        Experimental sleep curtailment causes wake-dependent increases in 24-h energy expenditure as measured by whole-room indirect calorimetry.
        Am J Clin Nutr. 2013; 98: 1433-1439
        • Bromley L.E.
        • Booth III, J.N.
        • Kilkus J.M.
        • Imperial J.G.
        • Penev P.D.
        Sleep restriction decreases the physical activity of adults at risk for type 2 diabetes.
        Sleep. 2012; 35: 977-984
        • Shechter A.
        • Rising R.
        • Wolfe S.
        • Albu J.B.
        • St-Onge M.P.
        Postprandial thermogenesis and substrate oxidation are unaffected by sleep restriction.
        Int J Obes (Lond). 2014; 38: 1153-1158
        • Rao M.N.
        • Neylan T.C.
        • Grunfeld C.
        • Mulligan K.
        • Schambelan M.
        • Schwarz J.M.
        Subchronic sleep restriction causes tissue-specific insulin resistance.
        J Clin Endocrinol Metab. 2015; 100: 1664-1671
        • St-Onge M.P.
        Sleep-obesity relation: underlying mechanisms and consequences for treatment.
        Obes Rev. 2017; 18: 34-39
        • Spiegel K.
        • Leproult R.
        • Van Cauter E.
        Impact of sleep debt on metabolic and endocrine function.
        Lancet. 1999; 354: 1435-1439
        • Buxton O.M.
        • Pavlova M.
        • Reid E.W.
        • Wang W.
        • Simonson D.C.
        • Adler G.K.
        Sleep restriction for 1 week reduces insulin sensitivity in healthy men.
        Diabetes. 2010; 59: 2126-2133
        • Broussard J.
        • Brady M.J.
        The impact of sleep disturbances on adipocyte function and lipid metabolism.
        Best Pract Res Clin Endocrinol Metab. 2010; 24: 763-773
        • Nedeltcheva A.V.
        • Kessler L.
        • Imperial J.
        • Penev P.D.
        Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance.
        J Clin Endocrinol Metab. 2009; 94: 3242-3250
        • Nedeltcheva A.V.
        • Imperial J.G.
        • Penev P.D.
        Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss.
        Obesity (Silver Spring). 2012; 20: 1379-1386
        • Robertson M.D.
        • Russell-Jones D.
        • Umpleby A.M.
        • Dijk D.J.
        Effects of three weeks of mild sleep restriction implemented in the home environment on multiple metabolic and endocrine markers in healthy young men.
        Metabolism. 2013; 62: 204-211
        • Schmid S.M.
        • Hallschmid M.
        • Jauch-Chara K.
        • Wilms B.
        • Lehnert H.
        • Born J.
        • et al.
        Disturbed glucoregulatory response to food intake after moderate sleep restriction.
        Sleep. 2011; 34: 371-377
        • Zielinski M.R.
        • Kline C.E.
        • Kripke D.F.
        • Bogan R.K.
        • Youngstedt S.D.
        No effect of 8-week time in bed restriction on glucose tolerance in older long sleepers.
        J Sleep Res. 2008; 17: 412-419
        • Broussard J.L.
        • Chapotot F.
        • Abraham V.
        • Day A.
        • Delebecque F.
        • Whitmore H.R.
        • et al.
        Sleep restriction increases free fatty acids in healthy men.
        Diabetologia. 2015; 58: 791-798
        • Leproult R.
        • Holmback U.
        • Van Cauter E.
        Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss.
        Diabetes. 2014; 63: 1860-1869
        • Leproult R.
        • Van Cauter E.
        Role of sleep and sleep loss in hormonal release and metabolism.
        Endocr Dev. 2010; 17: 11-21
        • Broussard J.L.
        • Ehrmann D.A.
        • Van Cauter E.
        • Tasali E.
        • Brady M.J.
        Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study.
        Ann Intern Med. 2012; 157: 549-557
        • Cedernaes J.
        • Lampola L.
        • Axelsson E.K.
        • Liethof L.
        • Hassanzadeh S.
        • Yeganeh A.
        • et al.
        A single night of partial sleep loss impairs fasting insulin sensitivity but does not affect cephalic phase insulin release in young men.
        J Sleep Res. 2016; 25: 5-10
        • Herzog N.
        • Jauch-Chara K.
        • Hyzy F.
        • Richter A.
        • Friedrich A.
        • Benedict C.
        • et al.
        Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men.
        Psychoneuroendocrinology. 2013; 38: 2075-2082
        • Stamatakis K.A.
        • Punjabi N.M.
        Effects of sleep fragmentation on glucose metabolism in normal subjects.
        Chest. 2010; 137: 95-101
        • Tasali E.
        • Leproult R.
        • Ehrmann D.A.
        • Van Cauter E.
        Slow-wave sleep and the risk of type 2 diabetes in humans.
        Proc Natl Acad Sci U S A. 2008; 105: 1044-1049
        • Thomas M.
        • Sing H.
        • Belenky G.
        • Holcomb H.
        • Mayberg H.
        • Dannals R.
        • et al.
        Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity.
        J Sleep Res. 2000; 9: 335-352
        • Bloom S.R.
        • Edwards A.V.
        • Hardy R.N.
        The role of the autonomic nervous system in the control of glucagon, insulin and pancreatic polypeptide release from the pancreas.
        J Physiol. 1978; 280: 9-23
        • Lembo G.
        • Capaldo B.
        • Rendina V.
        • Iaccarino G.
        • Napoli R.
        • Guida R.
        • et al.
        Acute noradrenergic activation induces insulin resistance in human skeletal muscle.
        Am J Phys. 1994; 266: E242-E247
        • Nonogaki K.
        New insights into sympathetic regulation of glucose and fat metabolism.
        Diabetologia. 2000; 43: 533-549
        • Mullington J.M.
        • Simpson N.S.
        • Meier-Ewert H.K.
        • Haack M.
        Sleep loss and inflammation.
        Best Pract Res Clin Endocrinol Metab. 2010; 24: 775-784
        • Faraut B.
        • Boudjeltia K.Z.
        • Vanhamme L.
        • Kerkhofs M.
        Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery.
        Sleep Med Rev. 2012; 16: 137-149
        • Vgontzas A.N.
        • Zoumakis E.
        • Bixler E.O.
        • Lin H.M.
        • Follett H.
        • Kales A.
        • et al.
        Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines.
        J Clin Endocrinol Metab. 2004; 89: 2119-2126
        • Irwin M.R.
        • Wang M.
        • Campomayor C.O.
        • Collado-Hidalgo A.
        • Cole S.
        Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.
        Arch Intern Med. 2006; 166: 1756-1762
        • van Leeuwen W.M.
        • Lehto M.
        • Karisola P.
        • Lindholm H.
        • Luukkonen R.
        • Sallinen M.
        • et al.
        Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP.
        PLoS ONE. 2009; 4e4589
        • Shearer W.T.
        • Reuben J.M.
        • Mullington J.M.
        • Price N.J.
        • Lee B.N.
        • Smith E.O.
        • et al.
        Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight.
        J Allergy Clin Immunol. 2001; 107: 165-170
        • Boyum A.
        • Wiik P.
        • Gustavsson E.
        • Veiby O.P.
        • Reseland J.
        • Haugen A.H.
        • et al.
        The effect of strenuous exercise, calorie deficiency and sleep deprivation on white blood cells, plasma immunoglobulins and cytokines.
        Scand J Immunol. 1996; 43: 228-235
        • Faraut B.
        • Boudjeltia K.Z.
        • Dyzma M.
        • Rousseau A.
        • David E.
        • Stenuit P.
        • et al.
        Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction.
        Brain Behav Immun. 2011; 25: 16-24
        • Wieser V.
        • Moschen A.R.
        • Tilg H.
        Inflammation, cytokines and insulin resistance: a clinical perspective.
        Arch Immunol Ther Exp (Warsz). 2013; 61: 119-125
        • Boden G.
        • Lebed B.
        • Schatz M.
        • Homko C.
        • Lemieux S.
        Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects.
        Diabetes. 2001; 50: 1612-1617
        • Roden M.
        • Price T.B.
        • Perseghin G.
        • Petersen K.F.
        • Rothman D.L.
        • Cline G.W.
        • et al.
        Mechanism of free fatty acid-induced insulin resistance in humans.
        J Clin Invest. 1996; 97: 2859-2865
        • Tasali E.
        • Chapotot F.
        • Wroblewski K.
        • Schoeller D.
        The effects of extended bedtimes on sleep duration and food desire in overweight young adults: a home-based intervention.
        Appetite. 2014; 80: 220-224
        • Chaput J.P.
        • Tremblay A.
        Sleeping habits predict the magnitude of fat loss in adults exposed to moderate caloric restriction.
        Obes Facts. 2012; 5: 561-566
        • Yannakoulia M.
        • Anastasiou C.A.
        • Karfopoulou E.
        • Pehlivanidis A.
        • Panagiotakos D.B.
        • Vgontzas A.
        Sleep quality is associated with weight loss maintenance status: the MedWeight study.
        Sleep Med. 2017; 34: 242-245
        • Chaput J.P.
        • Despres J.P.
        • Bouchard C.
        • Tremblay A.
        Longer sleep duration associates with lower adiposity gain in adult short sleepers.
        Int J Obes (Lond). 2012; 36: 752-756
        • Broussard J.L.
        • Wroblewski K.
        • Kilkus J.M.
        • Tasali E.
        Two nights of recovery sleep reverses the effects of short-term sleep restriction on diabetes risk.
        Diabetes Care. 2016; 39: e40-1
        • Killick R.
        • Hoyos C.M.
        • Melehan K.L.
        • Dungan G.C.
        • Poh J.
        • Liu P.Y.
        Metabolic and hormonal effects of ‘catch-up’ sleep in men with chronic, repetitive, lifestyle-driven sleep restriction.
        Clin Endocrinol (Oxf). 2015; 83: 498-507
        • Leproult R.
        • Deliens G.
        • Gilson M.
        • Peigneux P.
        Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction.
        Sleep. 2015; 35: 707-715
        • Nuyujukian D.S.
        • Beals J.
        • Huang H.
        • Johnson A.
        • Bullock A.
        • Manson S.M.
        • et al.
        Sleep duration and diabetes risk in American Indian and Alaska native participants of a lifestyle intervention project.
        Sleep. 2016; 39: 1919-1926
        • Cizza G.
        • Piaggi P.
        • Rother K.I.
        • Csako G.
        Hawthorne effect with transient behavioral and biochemical changes in a randomized controlled sleep extension trial of chronically short-sleeping obese adults: implications for the design and interpretation of clinical studies.
        PLoS ONE. 2014; 9e104176
        • Copinschi G.
        • Van Onderbergen A.
        • L'Hermite-Baleriaux M.
        • Szyper M.
        • Caufriez A.
        • Bosson D.
        • et al.
        Effects of the short-acting benzodiazepine triazolam, taken at bedtime, on circadian and sleep-related hormonal profiles in normal men.
        Sleep. 1990; 13: 232-244
        • Wagner J.
        • Wagner M.L.
        Non-benzodiazepines for the treatment of insomnia.
        Sleep Med Rev. 2000; 4: 551-581
        • Gramaglia E.
        • Ramella Gigliardi V.
        • Olivetti I.
        • Tomelini M.
        • Belcastro S.
        • Calvi E.
        • et al.
        Impact of short-term treatment with benzodiazepines and imidazopyridines on glucose metabolism in healthy subjects.
        J Endocrinol Invest. 2014; 37: 203-206
        • Blois R.
        • Gaillard J.M.
        • Attali P.
        • Coquelin J.P.
        Effect of zolpidem on sleep in healthy subjects: a placebo-controlled trial with polysomnographic recordings.
        Clin Ther. 1993; 15: 797-809
        • Gillin J.C.
        • Buchsbaum M.S.
        • Valladares-Neto D.C.
        • Hong C.C.
        • Hazlett E.
        • Langer S.Z.
        • et al.
        Effects of zolpidem on local cerebral glucose metabolism during non-REM sleep in normal volunteers: a positron emission tomography study.
        Neuropsychopharmacology. 1996; 15: 302-313
        • Brzezinski A.
        Melatonin in humans.
        N Engl J Med. 1997; 336: 186-195
        • McMullan C.J.
        • Curhan G.C.
        • Schernhammer E.S.
        • Forman J.P.
        Association of nocturnal melatonin secretion with insulin resistance in nondiabetic young women.
        Am J Epidemiol. 2013; 178: 231-238
        • Sparso T.
        • Bonnefond A.
        • Andersson E.
        • Bouatia-Naji N.
        • Holmkvist J.
        • Wegner L.
        • et al.
        G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: studies involving 19,605 Europeans.
        Diabetes. 2009; 58: 1450-1456
        • Bonnefond A.
        • Clement N.
        • Fawcett K.
        • Yengo L.
        • Vaillant E.
        • Guillaume J.L.
        • et al.
        Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes.
        Nat Genet. 2012; 44: 297-301
        • Garfinkel D.
        • Zorin M.
        • Wainstein J.
        • Matas Z.
        • Laudon M.
        • Zisapel N.
        Efficacy and safety of prolonged-release melatonin in insomnia patients with diabetes: a randomized, double-blind, crossover study.
        Diabetes Metab Syndr Obes. 2011; 4: 307-313
        • Tsunoda T.
        • Yamada M.
        • Akiyama T.
        • Minami T.
        • Yoshii T.
        • Kondo Y.
        • et al.
        The effects of Ramelteon on glucose metabolism and sleep quality in type 2 diabetic patients with insomnia: a pilot prospective randomized controlled trial.
        J Clin Med Res. 2016; 8: 878-887
        • Cagnacci A.
        • Arangino S.
        • Renzi A.
        • Paoletti A.M.
        • Melis G.B.
        • Cagnacci P.
        • et al.
        Influence of melatonin administration on glucose tolerance and insulin sensitivity of postmenopausal women.
        Clin Endocrinol (Oxf). 2001; 54: 339-346
        • Rubio-Sastre P.
        • Scheer F.A.
        • Gomez-Abellan P.
        • Madrid J.A.
        • Garaulet M.
        Acute melatonin administration in humans impairs glucose tolerance in both the morning and evening.
        Sleep. 2014; 37: 1715-1719
        • Garaulet M.
        • Gomez-Abellan P.
        • Rubio-Sastre P.
        • Madrid J.A.
        • Saxena R.
        • Scheer F.A.
        Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans.
        Metabolism. 2015; 64: 1650-1657