Advertisement

Burden of cancer attributable to obesity, type 2 diabetes and associated risk factors

Published:November 06, 2018DOI:https://doi.org/10.1016/j.metabol.2018.10.013

      Highlights

      • Obesity is a convincing risk factor for 11 types of cancer.
      • Type 2 diabetes influences the risk of cancer driven by high body mass index.
      • Specific types of foods and physical inactivity are independent risk factors for cancer.
      • Processed meats are carcinogens for humans.
      • Education and resolute public health interventions must be intensified.

      Abstract

      Overweight and obesity constitute a global pandemic with devastating consequences that affect >2 billion people. Obesity plays a central role in morbidity and mortality of diseases of multiple organs and systems, and it is a major contributor to the growing incidence of cancer. There is now sufficient level of evidence for the association between overweight and 11 types of cancer, among which are two of the most common cancers worldwide, those of the colorectum and postmenopausal breast. Sedentary lifestyle, unhealthy diet, and excessive alcohol intake also account for the burden of cancer by promoting obesity. The risk of specific types of cancer is also directly influenced, regardless of the magnitude of adiposity, by physical inactivity, consumption of red meat, processed meat and ultra-processed foods, dairy products, alcohol, whole grain cereals, nuts, vegetables, and fruits. Type 2 diabetes is another global health threat closely associated with obesity that boosts the risk of cancer driven by high BMI. Education to promote positive choices and physical activity and resolute public health interventions on food delivery are requested to reduce the burden of obesity-related cancer and lighten the unsustainable growing expenses to health systems.

      Abbreviations:

      BMI (Body mass index), CVD (Cardiovascular Disease), IARC (International Agency for Research on Cancer), IGFs (Insulin growth factors), OECD (Organization for Economic Co-operation and Development), WCRF/AICR (World Cancer Research Fund/American Institute for Cancer Research)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • International Agency for Cancer on Research
        • OECD
        Obesity update 2017.
        2017 ([Accessed August 13, 2018])
        • Calle E.E.
        • Rodríguez C.
        • Walker-Thurmond K.
        • Thun M.J.
        Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults.
        N Engl J Med. 2003; 348: 1625-1638
        • Ligibel J.A.
        • Alfano C.M.
        • Demark-Wahnefried W.
        • Burger R.A.
        • Chlebowski R.T.
        • Fabian C.J.
        • et al.
        American Society of Clinical Oncology position statement on obesity and cancer.
        . 2014; 32: 3568-3574
      1. Health Aff (Millwood). 2009; 28: 822-8331
        • Ng M.
        • Fleming T.
        • Robinson M.
        • Thomson B.
        • Graetz N.
        • Margono C.
        • et al.
        Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analyses for the Global Burden of Disease Study 2013.
        Lancet. 2014; 384: 766-781
        • Marques A.
        • Peralta M.
        • Naia A.
        • Loureiro N.
        • de Matos M.G.
        Prevalence of adult overweight and obesity in 20 European countries, 2014.
        Eur J Public Health. 2018; 28: 295-300
        • Brooke Steele C.
        • Thomas C.C.
        • Henley S.J.
        • Massetti G.M.
        • Gauska D.A.
        • Agurs-Collins
        • et al.
        Vital signs: trends in incidence of cancers associated with overweight and obesity - United States, 2005–2014.
        MMWR. 2017; 66: 1052-1058
        • Whitlock G.
        • Lewington S.
        • Sherliker P.
        • Clark R.
        • Emberson J.
        • et al.
        • Prospective Studies Collaboration
        Body-mass index and cause-specific mortality in 900000 adults: collaborative analyses of 57 prospective studies.
        Lancet. 2009; 373: 1083-1096
        • Keum N.
        • Greewood D.C.
        • Lee D.H.
        • Kim R.
        • Aune D.
        • Hu F.B.
        • et al.
        Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies.
        J Natl Cancer Inst. 2015; 107https://doi.org/10.1093/jnci/djv088
        • Lauby-Secretan B.
        • Scoccianti C.
        • Loomis D.
        • Grosse Y.
        • Bianchi F.
        • et al.
        Body fatness and cancer - viewpoint of the IARC Working Group.
        N Engl J Med. 2016; 375: 794-798
        • Arnold M.
        • Pandeya N.
        • Byrnes G.
        • Renehan A.G.
        • Stevens G.A.
        • Ezzati M.
        • et al.
        Global burden of cancer attributable to high body-mass index in 2012: a population-based study.
        Lancet Oncol. 2015; 16: 36-46
        • World Cancer Research Fund/American Institute for Cancer Research
        Continuous Update Project expert report 2018.
        (Available at)
        • International Agency for Research on Cancer
        • Kyrgiou M.
        • Kalliala I.
        • Markozannes G.
        • Gunter M.J.
        • Paraskevaidis E.
        • Gabra H.
        • et al.
        Adiposity and cancer at major anatomical sites: umbrella review of the literature.
        BMJ. 2017; 356https://doi.org/10.1136/bmj.j477
      2. International Diabetes Federation Atlas. Eight ed. 2017 (Available from)
        http://www.diabetesatlas.org
        Date accessed: August 22, 2018
        • Hamman R.F.
        • Wing R.R.
        • Edelstein S.L.
        • Lachin J.M.
        • Bray G.A.
        • Delahanty L.
        • et al.
        Effect of weight loss with lifestyle intervention on risk of diabetes.
        Diabetes Care. 2006; 29: 2102-2107
        • Thompson A.M.
        • Church T.S.
        • Janssen I.
        • Katzmarzyk
        • Earnest C.P.
        • Blair S.N.
        Cardiorespiratory fitness as a predictor of cancer mortality among men with prediabetes and diabetes.
        Diabetes Care. 2008; 31: 764-769
        • Tsilidis K.K.
        • Kasimis J.C.
        • Lopez D.S.
        • Ntzani E.N.
        • Ioannidis J.P.A.
        Type 2 diabetes and cancer: umbrella review of meta-analysis of observational studies.
        BMJ. 2015; 350g7607https://doi.org/10.1136/bmj.g7607
        • Chen Y.
        • Wu F.
        • Saito E.
        • Lin Y.
        • Song M.
        • Luu H.N.
        • et al.
        Association between type 2 diabetes and risk of cancer mortality: a pooled analysis of over 771000 individuals in the Asia Cohort Consortium.
        Diabetologia. 2017; 60: 1022-1032
        • Pearson-Stuttard J.
        • Zhou B.
        • Kontis V.
        • Bentham J.
        • Gunter M.
        • Ezzati M.
        Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment.
        Lancet Diabetes Endocrinol. 2018; 6: e6-e15
        • Arem H.
        • Moore S.C.
        • Patel A.
        • Hartge P.
        • Berrington A.
        • Phil D.
        • et al.
        Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship.
        JAMA Intern Med. 2015; 175: 959-967
        • O'Donovan G.
        • Lee I.M.
        • Hamer M.
        • Stamatakis E.
        Association of “weekend warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality.
        JAMA Intern Med. 2017; 177: 335-342
        • Moore S.C.
        • Lee I.M.
        • Weiderpass E.
        • Campbell P.T.
        • Sampson J.N.
        • Kitahara C.M.
        • et al.
        Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults.
        JAMA Intern Med. 2016; 176: 816-825
        • Hu F.B.
        • Willett W.C.
        • Li T.
        • Stampfer M.J.
        • Colditz G.A.
        • Manson J.E.
        Adiposity compared with physical activity in predicting mortality among women.
        N Engl J Med. 2004; 351: 2694-2703
        • Guthold R.
        • Stevens G.A.
        • Riley L.M.
        • Bull F.C.
        Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants.
        Lancet Glob Health. 2018; 6: e1077-e1086
        • World Health Organisation
        • Jensen M.T.
        • Holtermann A.
        • Bay H.
        • Gyntelberg F.
        Cardiorespiratory fitness and death from cancer: a 42-year follow-up from Copenhagen Male Study.
        Br J Sports Med. 2017; 51: 1364-1369
        • Lakoski S.G.
        • Willis B.L.
        • Barlow C.E.
        • Leonard D.
        • Gao A.
        • Radford N.B.
        • et al.
        Midlife cardiorespiratory fitness, incident cancer, and survival after cancer in men. The Cooper Center Longitudinal Study.
        JAMA Oncol. 2015; 1: 231-237
        • Vainshelboim B.
        • Müller J.
        • Lima R.M.
        • Nead K.T.
        • Chester C.
        • Chan K.
        • et al.
        Cardiorespiratory fitness and cancer incidence in men.
        Ann Epidemiol. 2017; 27: 442-447
        • Schmid D.
        • Leitzmann
        Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis.
        Ann Oncol. 2015; 26: 272-278
        • Peel J.B.
        • Sui X.
        • Adams S.A.
        • Hébert J.R.
        • Hardin J.W.
        • Blair S.N.
        A prospective study of cardiorespiratory fitness and breast cancer mortality.
        Med Sci Sports Exerc. 2009; 41: 742-748
        • Liu L.
        • Shi Y.
        • Li T.
        • Qin Q.
        • Yin J.
        • Pang S.
        • et al.
        Leisure time physical activity and cancer risk: evaluation of the WHO's recommendation based on 126 high-quality epidemiological studies.
        Br J Sports Med. 2016; 50: 372-378
        • Shaw E.
        • Farris M.S.
        • Stone C.R.
        • Derksen J.W.G.
        • Johnson R.
        • Hilsden R.J.
        • et al.
        Effects of physical activity on colorectal cancer risk among family history and body mass index subgroups: a systematic review and meta-analysis.
        BMC Cancer. 2018; https://doi.org/10.1186/s12885-017-3970-5
        • Wolfe R.R.
        The underappreciated role of muscle in health and disease.
        Am J Clin Nutr. 2006; 84: 475-482
        • Ruiz J.R.
        • Sui X.
        • Lobelo F.
        • Lee D.
        • Morrow J.R.
        • Jackson A.W.
        • et al.
        Association between muscular strength and mortality in men: prospective cohort study.
        BMJ. 2008; 337: 92-95
        • Ruiz J.R.
        • Sui X.
        • Lobelo F.
        • Lee D.
        • Morrow J.R.
        • Jackson A.W.
        • et al.
        Muscular strength and adiposity as predictors of adulthood cancer mortality in men.
        Cancer Epidemiol Biomarkers Prev. 2009; 18: 1468-1475
        • Ekelund U.
        • Steene-Johannsessen J.
        • Fagerland M.W.
        • Owen N.
        • Powell K.E.
        • Bauman A.E.
        • et al.
        Do the association of sedentary behavior with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonized meta-analysis of data from 850060 participants.
        Br J Sports Med. 2018; https://doi.org/10.1136/bjsports-2017-098963
        • Biswas A.
        • Oh P.I.
        • Faulkner G.E.
        • Bajaj R.R.
        • Silver M.A.
        • Mitchell M.S.
        • et al.
        Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis.
        Ann Intern Med. 2015; 162: 123-132
        • Ekelund U.
        • Steene-Johannsessen J.
        • Brown W.J.
        • Fagerlan M.W.
        • Owen N.
        • Powell K.E.
        • et al.
        Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonized meta-analysis of data from more than 1 million men and women.
        Lancet. 2016; 388: 1302-1310
        • Patterson R.
        • McNamara E.
        • Tainio M.
        • Hérick de Sá T.
        • Smith A.D.
        • Sharp S.J.
        • et al.
        Sedentary behavior and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis.
        Eur J Epidemiol. 2018; https://doi.org/10.1007/s10654-018-0380-1
        • Arem H.
        • Pfeiffer R.M.
        • Engels E.A.
        • Alfano C.M.
        • Hollenbeck A.
        • Park Y.
        • et al.
        Pre- and postdiagnosis physical activity, television viewing and mortality among patients with colorectal cancer in the National Institutes of Health-AARP Diet and Health Study.
        J Clin Oncol. 2015; 33: 180-188
        • Ratjen I.
        • Schafmayer C.
        • di Guiseppe R.
        • Waniek S.
        • Plachta-Danielzik S.
        • Koch M.
        • et al.
        Postdiagnosis physical activity, sleep duration, and TV watching and all-cause mortality among long-term colorectal cancer survivors: a prospective cohort study.
        BMC Cancer. 2017; 17: 701https://doi.org/10.1186/s12885-017-3697-3
        • World Cancer Research Fund/American Institute for Cancer Research
        Continuous Update Project report 2018. Physical activity and the risk of cancer.
        (Available at)
      3. Red meat and processed meat.
        IARC Monographs on the evaluation of carcinogenic risks to human. 2018; 114
        https://www.ncbi.nlm.nih.gov/books/NBK507971/
        Date accessed: August 14, 2018
        • Chan D.S.M.
        • Lau R.
        • Aune D.
        • Vieira R.
        • Greenwood D.C.
        • Jampman E.
        • et al.
        Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies.
        PLoS One. 2011; 6e2046https://doi.org/10.1371/journal.pone.0020456
        • Wang X.
        • Lin X.
        • Ouyang Y.Y.
        • Liu J.
        • Zhao G.
        • Pan A.
        • et al.
        Red and processed meat consumption and mortality: dose-response meta-analysis of prospective cohort studies.
        Public Health Nutr. 2016; 19: 893-905
        • Zheng J.S.
        • Hu X.J.X.
        • Zhao Y.M.
        • Yang J.
        • Li D.
        Intake of fish and marine n−3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies.
        BMJ. 2013; 346: f3706https://doi.org/10.1136/bmj.f3706
        • Chen G.C.
        • Qin L.Q.
        • Han T.M.
        • Zheng Y.
        • Xu G.Z.
        • Wang X.H.
        N−3 polyunsaturated fatty acids intake and risk of colorectal cancer: meta-analysis of prospective studies.
        Cancer Causes Control. 2015; 26: 133-141
        • Fu Y.Q.
        • Zheng J.S.
        • Yamg B.
        • Li D.
        Effect of individual omega-3 fatty acids on the risk of prostate cancer: a systematic review and dose-response meta-analysis of prospective cohort studies.
        J Epidemiol. 2015; 25: 261-274
        • Lu W.
        • Chen H.
        • Niu Y.
        • Wu H.
        • Xia D.
        • Wu Y.
        Dairy products intake and cancer mortality risk: a meta-analysis of 11 population-based cohort studies.
        Nutr J. 2016; 1https://doi.org/10.1186/s12937-016-0210-9
        • Si R.
        • Qu K.
        • Jiang Z.
        • Yang X.
        • Gao P.
        Egg consumption and breast cancer risk: a meta-analysis.
        Breast Cancer. 2014; 21: 251-261
        • Zeng S.T.
        • Guo L.
        • Liu S.K.
        • Wang S.K.
        • Xi J.
        • Huang P.
        • et al.
        Egg consumption is associated with increased risk of ovarian cancer: evidence from a meta-analysis of observational studies.
        Clin Nutr. 2015; : 34635-34641
        • Mokdad A.H.
        • Marks J.S.
        • Stroup D.F.
        • Gerberding J.L.
        Actual causes of death in the United States 2000.
        JAMA. 2004; 291: 1238-1245
        • World Health Organization (WHO)
        Global Status Report on Alcohol and Health.
        • Bagnardi V.
        • Rota M.
        • Botteri E.
        • Tramacere I.
        • Islami F.
        • Fedirko V.
        • et al.
        Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis.
        Br J Cancer. 2015; 112: 580-583
        • Monteiro C.A.
        • Cannon G.
        • Moubarac J.C.
        • Levy R.B.
        • Louzada M.C.L.
        • Jaime P.C.
        The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing.
        Public Health Nutr. 2018; 21: 5-17
        • Fiolet T.
        • Srour B.
        • Sellem L.
        • Kesse-Guyot E.
        • Allès B.
        • Méjean C.
        • et al.
        Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort.
        BMJ. 2018; 360: k322https://doi.org/10.1136/bmj.k322
        • Aune D.
        • Keum N.
        • Giovannucci E.
        • Fadnes L.T.
        • Boffetta P.
        • Greewood D.C.
        • et al.
        Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies.
        BMJ. 2016; 353https://doi.org/10.1136/bmj.i2716
        • Zong G.
        • Gao A.
        • Hu F.B.
        • Sun Q.
        Whole grain intake and mortality from all causes, cardiovascular disease, and cancer. A meta-analysis of prospective cohort studies.
        Circulation. 2016; 133: 2370-2380
        • Wei H.
        • Gao Z.
        • Liang R.
        • Li Z.
        • Hao H.
        • Liu X.
        Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies.
        Br J Nutr. 2016; 116: 514-525
        • Aune D.
        • Keum N.
        • Fadnes L.T.
        • Bofferra P.
        • Greenwood D.C.
        • Tonstad S.
        • et al.
        Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies.
        BMC Med. 2016; https://doi.org/10.1186/s12916-016-0730-3
        • Van en Brandt P.A.
        • Nieuwenhuis L.
        Tree nut, peanut, and peanut butter intake and the risk of postmenopausal breast cancer. The Netherlands Cohort Study.
        Cancer Causes Control. 2018; 29: 63-75
        • Wu L.
        • Wang Z.
        • Zhu J.
        • Murad A.L.
        • Prokp L.J.
        • Murad M.H.
        Nut consumption and risk of cancer and type 2 diabetes: a systematic review and meta-analysis.
        Nutr Rev. 2015; 73: 409-425
        • Eslamparast T.
        • Sharafkhah M.
        • Poustchi H.
        • Hashemian M.
        • Dawsey S.M.
        • Freedman N.D.
        • et al.
        Nut consumption and total and cause-specific mortality: results from the Golestan Cohort Study.
        Int J Epidemiol. 2017; 46: 75-85
        • Lee J.
        • Shin A.
        • Oh J.H.
        • Kim J.
        The relationship between nut intake and risk of colorectal cancer: a case control study.
        Nutr J. 2018; 1737https://doi.org/10.1186/s12937-018-0345-y
        • Aune D.
        • Giovannucci E.
        • Boffetta P.
        • Fadnes L.T.
        • Keum N.
        • Norat T.
        • et al.
        Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all cause mortality - a systematic review and dose response meta-analysis of prospective studies.
        Int J Epidemiol. 2017; 46: 1029-1056
        • Kushi L.H.
        • Doyle C.
        • McCullough M.
        • Rock C.R.
        • Demark-Wahnefried W.
        • Bandera E.V.
        • et al.
        American Cancer Society guidelines on nutrition and physical activity for cancer prevention. Reducing the risk of cancer with healthy food choices and physical activity.
        CA Cancer J Clin. 2012; 62: 30-67
        • Nrat T.
        • Scoccianti C.
        • Boutron-Ruault M.C.
        • Anderson A.
        • Berrino F.
        • Cecchini M.
        • et al.
        European Code Against cancer 4th Edition: diet and cancer.
        Cancer Epidemiol. 2015; 39: S56-S66
        • Jankovic N.
        • Geelrn A.
        • Winkels R.M.
        • Mwungura B.
        • Fedirko V.
        • Jenab M.
        • et al.
        Adherence to the WCRF/AICR dietary recommendations for cancer prevention and risk of cancer in elderly from Europe and United States: a meta-analysis within the CHANCES Project.
        Cancer Epidemiol Biomarkers Prev. 2017; 26: 136-144
        • Onvani S.
        • Haghighatdoost F.
        • Surkan P.J.
        • Larijani B.
        • Azadbakht L.
        Healthy Eating Index dietary patterns and mortality from all causes, cardiovascular disease and cancer: a meta-analysis of observational studies.
        J Hum Nutr Diet. 2017; 30: 216-226
        • Sotos-Prieto M.
        • Bhupathiraju S.N.
        • Mattei J.
        • Fung T.T.
        • Li Y.
        • Pan A.
        Association of changes in diet quality and cause-specific mortality.
        N Engl J Med. 2017; 377: 143-153
        • Schwingshackl L.
        • Schwedhelm C.
        • Galbete C.
        • Hoffmann G.
        Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis.
        Nutrients. 2017; 9https://doi.org/10.3390/nu9101063
        • Khandekar M.
        • Cohen P.
        • Spiegelman B.M.
        Molecular mechanisms of cancer development in obesity.
        Nat Rev Cancer. 2011; 11: 886-895
        • Hopkins B.D.
        • Goncalves M.D.
        • Cantley L.C.
        Obesity and cancer mechanisms: cancer metabolism.
        J Clin Oncol. 2016; 34: 4277-4283
        • Dalamaga M.
        • Diakopoulos K.N.
        • Mantzoros C.S.
        The role of adiponectin in cancer: a review of current evidence.
        Endocr Rev. 2012; 33: 547-594
        • Parjer E.D.
        • Folsom A.R.
        Intentional weight loss and incidence of obesity-related cancers: the Iowa Women's Healthy Study.
        Int J Obes Relat Metab Disord. 2003; 27: 1447-1452
        • Harvie M.
        • Howell A.
        • Vierkant R.A.
        • Kumar N.
        • Cerhan J.R.
        • Kelemen L.E.
        • et al.
        Association of gain and loss of weight before and after menopause with risk of postmenopausal breast cancer in the Iowa women's health study.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 656-661
        • Eliassen A.H.
        • Colditz G.A.
        • Rosner B.
        • Willett W.C.
        • Hankinson S.E.
        Adult weight change and risk of postmenopausal breast cancer.
        JAMA. 2006; 296: 193-201
        • Rapp K.
        • Klenk J.
        • Ulmer H.
        • Concin H.
        • Diem G.
        • Oberaigner W.
        • et al.
        Weight change and cancer risk in a cohort of more than 65000 adults in Austria.
        Ann Oncol. 2008; 19: 641-648
        • Luo J.
        • Chlebowski R.T.
        • Hendryx M.
        • Rohan T.
        • Wactawski-Wende J.
        • Thomson C.A.
        • et al.
        Intentional weight loss and endometrial cancer risk.
        J Clin Oncol. 2017; 35: 1189-1193
        • Welti L.M.
        • Beavers D.P.
        • Caan B.J.
        • Sangi-Haghpeykar H.
        • Vitolins M.Z.
        • Beavers K.M.
        Weight fluctuation and cancer risk in post-menopausal women: the Women's Health Initiative.
        Cancer Epidemiol Biomarkers Prev. 2017; 26: 779-786
        • Sjöström L.
        • Gummesson A.
        • Sjöström C.D.
        • Narbro K.
        • Peltonem M.
        • Wedel H.
        • et al.
        Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study). A prospective, controlled intervention trial.
        Lancet Oncol. 2009; 10: 653-662
        • Tee M.C.
        • Cao Y.
        • Warnock G.L.
        • Hu F.B.
        • Chavarro J.E.
        Effect of bariatric surgery on oncologic outcomes: a systematic review and meta-analysis.
        Surg Endosc. 2013; 27: 4449-4456
        • Nauck M.A.
        • Friedrich N.
        Do GLP-1-based therapies increase cancer risk?.
        Diabetes Care. 2013; 36: s245-s252
        • Hicks B.M.
        • Yin H.
        • Yu O.H.Y.
        • Pollak M.N.
        • Platt R.W.
        • Azoulay L.
        Glucagon-like peptide-1 analogues and risk of breast cancer in women with type 2 diabetes: population based cohort study sing the UK Clinical Practice Research Datalink.
        BMJ. 2016; 355https://doi.org/10.1136/bmj.i5340
        • McKenzie F.
        • Biessy C.
        • Ferrari P.
        • Freisling H.
        • Rinaldi S.
        • Chajès V.
        • et al.
        Healthy lifestyle and risk of cancer in the European Prospective Investigation into Cancer and Nutrition Cohort Study.
        Medicine (Baltimore). 2016; 95: e2850https://doi.org/10.1097/MD.0000000000002850
        • Li Y.
        • Pan A.
        • Wang D.D.
        • Liu X.
        • Dhana K.
        • Franco O.H.
        • et al.
        Impact of healthy lifestyle factors on life expectancies in the US population.
        Circulation. 2018; 138: 345-355