Lipoxygenase drives lipidomic and metabolic reprogramming in ischemic heart failure

      Highlights

      • Bioactive lipids and metabolites define milieu around the leukocytes in acute and chronic heart failure.
      • 12/15LOX (Lipoxygenase) serves as an immune responsive enzyme and generates number of eicosanoids.

      Abstract

      Background

      After myocardial infarction (MI), delayed progression or reversal of cardiac remodeling is a prime target to limit advanced chronic heart failure (HF). However, the temporal kinetics of lipidomic and systemic metabolic signaling is unclear in HF. There is no consensus on metabolic and lipidomic signatures that influence structure, function, and survival in HF. Here we use genetic knock out model to delineate lipidomic, and metabolic changes to describe the role of lipoxygenase in advancing ischemic HF driven by leukocyte activation with signs of non-resolving inflammation. Bioactive lipids and metabolites are implicated in acute and chronic HF, and the goal of this study was to define the role of lipoxygenase in temporal kinetics of lipidomic and metabolic reprogramming in HF.

      Materials and methods

      To address this question, we used a permanent coronary ligation mouse model which showed profound metabolic and lipidomic reprogramming in acute HF. Additionally, we defined the lipoxygenase-mediated changes in cardiac pathophysiology in acute and chronic HF. For this, we quantitated systemic metabolic changes and lipidomic profiling in infarcted heart tissue with obvious structural remodeling and cardiac dysfunction progressing from acute to chronic HF in the survival cohort.

      Results

      After MI, lipoxygenase-derived specialized pro-resolving mediators were quantitated and showed lipoxygenase-deficient mice (12/15LOX−/−) biosynthesize epoxyeicosatrienoic acid (EETs; cypoxins) to facilitate cardiac healing. Lipoxygenase-deficient mice reduced diabetes risk biomarker 2-aminoadipic acid with profound alterations of plasma metabolic signaling of hexoses, amino acids, biogenic amines, acylcarnitines, glycerophospholipids, and sphingolipids in acute HF, thereby improved survival.

      Conclusion

      Specific lipoxygenase deletion alters lipidomic and metabolic signatures, with modified leukocyte profiling that delayed HF progression and improved survival. Future studies are warranted to define the molecular network of lipidome and metabolome in acute and chronic HF patients.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Taegtmeyer H.
        • Lubrano G.
        Rethinking cardiac metabolism: metabolic cycles to refuel and rebuild the failing heart.
        F1000Prime Rep. 2014; 6: 90
        • Taegtmeyer H.
        • Goodwin G.W.
        • Doenst T.
        • Frazier O.H.
        Substrate metabolism as a determinant for postischemic functional recovery of the heart.
        Am J Cardiol. 1997; 80: 3A-10A
        • Batch B.C.
        • Shah S.H.
        • Newgard C.B.
        • Turer C.B.
        • Haynes C.
        • Bain J.R.
        • et al.
        Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness.
        Metabolism. 2013; 62: 961-969
        • Halade G.V.
        • Kain V.
        Obesity and cardiometabolic defects in heart failure pathology.
        Compr Physiol. 2017; 7: 1463-1477
        • McGarrah R.W.
        • Crown S.B.
        • Zhang G.F.
        • Shah S.H.
        • Newgard C.B.
        Cardiovascular metabolomics.
        Circ Res. 2018; 122: 1238-1258
        • Ikegami R.
        • Shimizu I.
        • Yoshida Y.
        • Minamino T.
        Metabolomic analysis in heart failure.
        Circ J. 2017; 82: 10-16
        • Halade G.V.
        • Kain V.
        • Ingle K.A.
        Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology.
        Am J Physiol Heart Circ Physiol. 2018; 314: H255-H67
        • Emami H.
        • Singh P.
        • MacNabb M.
        • Vucic E.
        • Lavender Z.
        • Rudd J.H.
        • et al.
        Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans.
        JACC Cardiovasc Imaging. 2015; 8: 121-130
        • Ponikowski P.
        • Anker S.D.
        • AlHabib K.F.
        • Cowie M.R.
        • Force T.L.
        • Hu S.
        • et al.
        Heart failure: preventing disease and death worldwide.
        ESC Heart Fail. 2014; 1: 4-25
        • Cahill T.J.
        • Kharbanda R.K.
        Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention: mechanisms, incidence and identification of patients at risk.
        World J Cardiol. 2017; 9: 407-415
        • Neubauer S.
        The failing heart—an engine out of fuel.
        N Engl J Med. 2007; 356: 1140-1151
        • Kostis J.B.
        Treatment of hypertension in older patients: an updated look at the role of calcium antagonists.
        Am J Geriatr Cardiol. 2003; 12: 319-327
        • Yancy Clyde W.
        • Jessup M.
        • Bozkurt B.
        • Butler J.
        • Casey Donald E.
        • Drazner Mark H.
        • et al.
        ACCF/AHA guideline for the management of heart failure: executive summary.
        Circulation. 2013; 128: 1810-1852
        • van Riet E.E.
        • Hoes A.W.
        • Wagenaar K.P.
        • Limburg A.
        • Landman M.A.
        • Rutten F.H.
        Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review.
        Eur J Heart Fail. 2016; 18: 242-252
        • Cheng M.L.
        • Wang C.H.
        • Shiao M.S.
        • Liu M.H.
        • Huang Y.Y.
        • Huang C.Y.
        • et al.
        Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics.
        J Am Coll Cardiol. 2015; 65: 1509-1520
        • Halade G.V.
        • Kain V.
        • Ingle K.A.
        • Prabhu S.D.
        Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing.
        Am J Physiol Heart Circ Physiol. 2017; 313: H89-H102
        • Kain V.
        • Ingle K.A.
        • Kabarowski J.
        • Barnes S.
        • Limdi N.A.
        • Prabhu S.D.
        • et al.
        Genetic deletion of 12/15 lipoxygenase promotes effective resolution of inflammation following myocardial infarction.
        J Mol Cell Cardiol. 2018; 118: 70-80
        • Halade G.V.
        • Norris P.C.
        • Kain V.
        • Serhan C.N.
        • Ingle K.A.
        Splenic leukocytes define the resolution of inflammation in heart failure.
        Sci Signal. 2018; 11
        • Adel S.
        • Karst F.
        • Gonzalez-Lafont A.
        • Pekarova M.
        • Saura P.
        • Masgrau L.
        • et al.
        Evolutionary alteration of ALOX15 specificity optimizes the biosynthesis of antiinflammatory and proresolving lipoxins.
        Proc Natl Acad Sci U S A. 2014; 510: 92-101
        • Serhan C.N.
        Pro-resolving lipid mediators are leads for resolution physiology.
        Nature. 2014; 510: 92-101
        • Lindsey M.L.
        • Bolli R.
        • Canty Jr., J.M.
        • Du X.J.
        • Frangogiannis N.G.
        • Frantz S.
        • et al.
        Guidelines for experimental models of myocardial ischemia and infarction.
        Am J Physiol Heart Circ Physiol. 2018; 314: H812-H38
        • Ma Y.
        • Halade G.V.
        • Zhang J.
        • Ramirez T.A.
        • Levin D.
        • Voorhees A.
        • et al.
        Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting M2 macrophage activation.
        Circ Res. 2013; 112: 675-688
        • Menning A.
        • Walter A.
        • Rudolph M.
        • Gashaw I.
        • Fritzemeier K.H.
        • Roese L.
        Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model.
        PLoS One. 2012; 7e41800
        • Halade G.V.
        • Kain V.
        • Black L.M.
        • Prabhu S.D.
        • Ingle K.A.
        Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction.
        Aging (Albany NY). 2016; 8: 2611-2634
        • Siskos A.P.
        • Jain P.
        • Romisch-Margl W.
        • Bennett M.
        • Achaintre D.
        • Asad Y.
        • et al.
        Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma.
        Anal Chem. 2017; 89: 656-665
        • Nandania J.
        • Peddinti G.
        • Pessia A.
        • Kokkonen M.
        • Velagapudi V.
        Validation and automation of a high-throughput multitargeted method for semiquantification of endogenous metabolites from different biological matrices using tandem mass spectrometry.
        Metabolites. 2018; 8
        • Zordoky B.N.
        • Sung M.M.
        • Ezekowitz J.
        • Mandal R.
        • Han B.
        • Bjorndahl T.C.
        • et al.
        Metabolomic fingerprint of heart failure with preserved ejection fraction.
        PLoS One. 2015; 10e0124844
        • Taegtmeyer H.
        • Young M.E.
        • Lopaschuk G.D.
        • Abel E.D.
        • Brunengraber H.
        • Darley-Usmar V.
        • et al.
        Assessing cardiac metabolism: a scientific statement from the American Heart Association.
        Circ Res. 2016; 118: 1659-1701
        • Burr G.O.
        • Burr M.M.
        Nutrition classics from the journal of biological chemistry 82:345-67, 1929. A new deficiency disease produced by the rigid exclusion of fat from the diet.
        Nutr Rev. 1973; 31: 248-249
        • Hu S.
        • Wang L.
        • Yang D.
        • Li L.
        • Togo J.
        • Wu Y.
        • et al.
        Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice.
        Cell Metab. 2018; 28 (e414): 415-431
        • Kain V.
        • Ingle K.A.
        • Kachman M.
        • Baum H.
        • Shanmugam G.
        • Rajasekaran N.S.
        • et al.
        Excess omega-6 fatty acids influx in aging drives metabolic dysregulation, electrocardiographic alterations, and low-grade chronic inflammation.
        Am J Physiol Heart Circ Physiol. 2018; 314: H160-h9
        • Norris P.C.
        • Serhan C.N.
        Metabololipidomic profiling of functional immunoresolvent clusters and eicosanoids in mammalian tissues.
        Biochem Biophys Res Commun. 2018; 504: 553-561
        • Serhan C.N.
        Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms.
        FASEB J. 2017; 31: 1273-1288
        • Serhan C.N.
        • Levy B.D.
        Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators.
        J Clin Invest. 2018; 128: 2657-2669
        • Robinette C.D.
        • Fraumeni Jr., J.F.
        Splenectomy and subsequent mortality in veterans of the 1939–45 war.
        Lancet. 1977; 2: 127-129
        • Dennis E.A.
        • Norris P.C.
        Eicosanoid storm in infection and inflammation.
        Nat Rev Immunol. 2015; 15: 511-523
        • Werz O.
        • Gerstmeier J.
        • Libreros S.
        • De la Rosa X.
        • Werner M.
        • Norris P.C.
        • et al.
        Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity.
        Nat Commun. 2018; 9: 59
        • Wang T.J.
        • Ngo D.
        • Psychogios N.
        • Dejam A.
        • Larson M.G.
        • Vasan R.S.
        • et al.
        2-Aminoadipic acid is a biomarker for diabetes risk.
        J Clin Invest. 2013; 123: 4309-4317
        • Imai Y.
        • Dobrian A.D.
        • Morris M.A.
        • Taylor-Fishwick D.A.
        • Nadler J.L.
        Lipids and immunoinflammatory pathways of beta cell destruction.
        Diabetologia. 2016; 59: 673-678
        • Eming S.A.
        • Wynn T.A.
        • Martin P.
        Inflammation and metabolism in tissue repair and regeneration.
        Science. 2017; 356: 1026-1030
        • Aquilani R.
        • La Rovere M.T.
        • Corbellini D.
        • Pasini E.
        • Verri M.
        • Barbieri A.
        • et al.
        Plasma amino acid abnormalities in chronic heart failure. Mechanisms, potential risks and targets in human myocardium metabolism.
        Nutrients. 2017; 9
        • Bertero E.
        • Maack C.
        Metabolic remodelling in heart failure.
        Nat Rev Cardiol. 2018; 15: 457-470
        • Skelly D.A.
        • Squiers G.T.
        • McLellan M.A.
        • Bolisetty M.T.
        • Robson P.
        • Rosenthal N.A.
        • et al.
        Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart.
        Cell Rep. 2018; 22: 600-610
        • Nahrendorf M.
        Myeloid cell contributions to cardiovascular health and disease.
        Nat Med. 2018; 24: 711-720
        • Zhou X.
        • Liu X.L.
        • Ji W.J.
        • Liu J.X.
        • Guo Z.Z.
        • Ren D.
        • et al.
        The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events.
        Medicine (Baltimore). 2016; 95: e3466
        • O'Neill L.A.J.
        • Kishton R.J.
        • Rathmell J.
        A guide to immunometabolism for immunologists.
        Nat Rev Immunol. 2016; 16: 553-565
        • Tourki B.
        • Halade G.
        Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling.
        FASEB J. 2017; 31: 4226-4239
        • Jadapalli J.K.
        • Wright G.W.
        • Kain V.
        • Sherwani M.A.
        • Sonkar R.
        • Yusuf N.
        • et al.
        Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters the inflammation-resolution program in the myocardium.
        Am J Physiol Heart Circ Physiol. 2018; 315: H1091-H100
        • Halade G.V.
        • Kain V.
        • Wright G.M.
        • Jadapalli J.K.
        Subacute treatment of carprofen facilitate splenocardiac resolution deficit in cardiac injury.
        J Leukoc Biol. 2018; 104: 1173-1186
        • Kain V.
        • Van Der Pol W.
        • Mariappan N.
        • Ahmad A.
        • Eipers P.
        • Gibson D.L.
        • et al.
        Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophil:lymphocyte ratio, leading to inflamed milieu in acute heart failure.
        FASEB J. 2019; fj201802477R
        • Pickens C.A.
        • Sordillo L.M.
        • Zhang C.
        • Fenton J.I.
        Obesity is positively associated with arachidonic acid-derived 5- and 11-hydroxyeicosatetraenoic acid (HETE).
        Metabolism. 2017; 70: 177-191
        • Werner M.
        • Jordan P.M.
        • Romp E.
        • Czapka A.
        • Rao Z.
        • Kretzer C.
        • et al.
        Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome.
        FASEB J. 2019; fj201802509R