Advertisement

Myocardial ketone body utilization in patients with heart failure: The impact of oral ketone ester

Published:November 25, 2020DOI:https://doi.org/10.1016/j.metabol.2020.154452

      Highlights

      • Subclinical metabolic remodelling occurs early in the natural history of heart failure
      • Metabolic remodelling is characterized by an increased capacity to utilize ketone bodies, despite normal ketone body levels
      • Ketones utilization correlates with the degree of cardiac dysfunction and remodelling
      • Ketones myocardial utilization is uncoupled from use of other energetic substrates, without evidence of substrate competition
      • Ketone Ester drink is a feasible approach to achieve ketosis and should be tested as a potential therapeutic modality in HF

      Abstract

      Aims

      Upregulation of ketone body (β-hydroxybutyrate, βHB) utilization has been documented in human end-stage heart failure (HF), but is unclear if this is due to intrinsic cardiac metabolic remodeling or a HF-related catabolic state. This study sought to evaluate the maximal ketone body utilization capacity and its determinants in controls and in patients with moderate HF and reduced ejection fraction (HFrEF).

      Methods and results

      19 HFrEF patients and 9 controls underwent sampling from the arterial circulation (A) and coronary sinus (CS) to measure transmyocardial extraction of energy-providing substrates and oxygen. In a separate experiment, measurements were performed 80-min after oral administration of 25 g of ketone ester (KE, (R)-3-hydroxybutyl(R)-3-hydroxybutyrate) drink in 11 HFrEF and 6 control subjects. There were no statistically significant differences in fasting substrate levels and fractional extractions between HF and controls. Administration of KE increased βHB by 12.9-fold, revealing an increased ability to utilize ketones in HFrEF as compared to controls (fractional extraction, FE%: 52 vs 39%, p = 0.035). βHB FE% correlated directly with βHB myocardial delivery (r = 0.90), LV mass (r = 0.56), LV diameter (r = 0.65) and inversely with LV EF (−0.59) (all p < 0.05). βHB FE% positively correlated with lactate FE% (p < 0.01), but not with FFA or glucose FE%, arguing against substrate competition.

      Conclusions

      Acute nutritional ketosis enhances βHB extraction in patients with HFrEF compared to controls, and this enhancement correlates with degree of cardiac dysfunction and remodeling. Data suggest that subclinical metabolic remodeling occurs early in HF progression. Further studies are needed to determine whether exogenous ketones may have a potential therapeutic role.

      Graphical Abstract

      Abbreviations:

      FFA (free fatty acids), KB (ketone bodies), KE (ketone ester), FE% (fractional extraction), βHB (β-hydroxybutyrate)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wende A.R.
        • Brahma M.K.
        • McGinnis G.R.
        • Young M.E.
        Metabolic origins of heart failure.
        JACC Basic Transl Sci. 2017; 2: 297-310
        • Davila-Roman V.G.
        • Vedala G.
        • Herrero P.
        • de las Fuentes L.
        • Rogers J.G.
        • Kelly D.P.
        • et al.
        Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy.
        J Am Coll Cardiol. 2002; 40: 271-277
        • Lopaschuk G.D.
        • Ussher J.R.
        Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates.
        Circ Res. 2016; 119: 1173-1176
        • Cotter D.G.
        • Schugar R.C.
        • Crawford P.A.
        Ketone body metabolism and cardiovascular disease.
        Am J Physiol Heart Circ Physiol. 2013; 304: H1060-H1076
        • Puchalska P.
        • Crawford P.A.
        Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics.
        Cell Metab. 2017; 25: 262-284
        • Cahill Jr., G.F.
        Fuel metabolism in starvation.
        Annu Rev Nutr. 2006; 26: 1-22
        • Lommi J.
        • Kupari M.
        • Koskinen P.
        • Naveri H.
        • Leinonen H.
        • Pulkki K.
        • et al.
        Blood ketone bodies in congestive heart failure.
        J Am Coll Cardiol. 1996; 28: 665-672
        • Bing R.J.
        • Siegel A.
        • Ungar I.
        • Gilbert M.
        Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism.
        Am J Med. 1954; 16: 504-515
        • Sato K.
        • Kashiwaya Y.
        • Keon C.A.
        • Tsuchiya N.
        • King M.T.
        • Radda G.K.
        • et al.
        Insulin, ketone bodies, and mitochondrial energy transduction.
        FASEB J. 1995; 9: 651-658
        • Horton J.L.
        • Davidson M.T.
        • Kurishima C.
        • Vega R.B.
        • Powers J.C.
        • Matsuura T.R.
        • et al.
        The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense.
        JCI Insight. 2019; 4
        • Selvaraj S.
        • Kelly D.P.
        • Margulies K.B.
        Implications of altered ketone metabolism and therapeutic ketosis in heart failure.
        Circulation. 2020; 141: 1800-1812
        • Ferrannini E.
        • Baldi S.
        • Frascerra S.
        • Astiarraga B.
        • Heise T.
        • Bizzotto R.
        • et al.
        Shift to fatty substrate utilization in response to sodium-glucose Cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes.
        Diabetes. 2016; 65: 1190-1195
        • Yurista S.R.
        • Sillje H.H.W.
        • Oberdorf-Maass S.U.
        • Schouten E.M.
        • Pavez Giani M.G.
        • Hillebrands J.L.
        • et al.
        Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction.
        Eur J Heart Fail. 2019; 21: 862-873
        • Packer M.
        • Anker S.D.
        • Butler J.
        • Filippatos G.
        • Pocock S.J.
        • Carson P.
        • et al.
        Cardiovascular and renal outcomes with Empagliflozin in heart failure.
        N Engl J Med. 2020; 383: 1413-1424
        • McMurray J.J.V.
        • Solomon S.D.
        • Inzucchi S.E.
        • Kober L.
        • Kosiborod M.N.
        • Martinez F.A.
        • et al.
        Dapagliflozin in patients with heart failure and reduced ejection fraction.
        N Engl J Med. 2019; 381: 1995-2008
        • Bedi Jr., K.C.
        • Snyder N.W.
        • Brandimarto J.
        • Aziz M.
        • Mesaros C.
        • Worth A.J.
        • et al.
        Evidence for Intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure.
        Circulation. 2016; 133: 706-716
        • Aubert G.
        • Martin O.J.
        • Horton J.L.
        • Lai L.
        • Vega R.B.
        • Leone T.C.
        • et al.
        The failing heart relies on ketone bodies as a fuel.
        Circulation. 2016; 133: 698-705
        • Voros G.
        • Ector J.
        • Garweg C.
        • Droogne W.
        • Van Cleemput J.
        • Peersman N.
        • et al.
        Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling.
        Circ Heart Fail. 2018; 11e004953
        • Kolwicz Jr., S.C.
        • Airhart S.
        • Tian R.
        Ketones step to the plate: a game changer for metabolic remodeling in heart failure?.
        Circulation. 2016; 133: 689-691
        • Stubbs B.J.
        • Cox P.J.
        • Evans R.D.
        • Santer P.
        • Miller J.J.
        • Faull O.K.
        • et al.
        On the metabolism of exogenous ketones in humans.
        Front Physiol. 2017; 8: 848
        • Cox P.J.
        • Kirk T.
        • Ashmore T.
        • Willerton K.
        • Evans R.
        • Smith A.
        • et al.
        Nutritional ketosis alters fuel preference and thereby endurance performance in athletes.
        Cell Metab. 2016; 24: 256-268
        • Youm Y.H.
        • Nguyen K.Y.
        • Grant R.W.
        • Goldberg E.L.
        • Bodogai M.
        • Kim D.
        • et al.
        The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease.
        Nat Med. 2015; 21: 263-269
        • Shimazu T.
        • Hirschey M.D.
        • Newman J.
        • He W.
        • Shirakawa K.
        • Le Moan N.
        • et al.
        Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor.
        Science. 2013; 339: 211-214
        • Sack M.N.
        • Rader T.A.
        • Park S.
        • Bastin J.
        • McCune S.A.
        • Kelly D.P.
        Fatty acid oxidation enzyme gene expression is downregulated in the failing heart.
        Circulation. 1996; 94: 2837-2842
        • Janardhan A.
        • Chen J.
        • Crawford P.A.
        Altered systemic ketone body metabolism in advanced heart failure.
        Tex Heart Inst J. 2011; 38: 533-538
        • Funada J.
        • Betts T.R.
        • Hodson L.
        • Humphreys S.M.
        • Timperley J.
        • Frayn K.N.
        • et al.
        Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling.
        PLoS One. 2009; 4e7533
        • Murashige D.
        • Jang C.
        • Neinast M.
        • Edwards J.J.
        • Cowan A.
        • Hyman M.C.
        • et al.
        Comprehensive quantification of fuel use by the failing and nonfailing human heart.
        Science. 2020; 370: 364-368
        • Janovska P.
        • Melenovsky V.
        • Svobodova M.
        • Havlenova T.
        • Kratochvilova H.
        • Haluzik M.
        • et al.
        Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin.
        J Cachexia Sarcopenia Muscle. 2020; https://doi.org/10.1002/jcsm.12631
        • Schugar R.C.
        • Moll A.R.
        • Andre d’Avignon D.
        • Weinheimer C.J.
        • Kovacs A.
        • Crawford P.A.
        Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling.
        Mol Metab. 2014; 3: 754-769
        • Uchihashi M.
        • Hoshino A.
        • Okawa Y.
        • Ariyoshi M.
        • Kaimoto S.
        • Tateishi S.
        • et al.
        Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure.
        Circ Heart Fail. 2017; 10e004417
        • Maack C.
        • Lehrke M.
        • Backs J.
        • Heinzel F.R.
        • Hulot J.S.
        • Marx N.
        • et al.
        Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the translational research Committee of the Heart Failure Association-European Society of cardiology.
        Eur Heart J. 2018; 39: 4243-4254
        • Melenovsky V.
        • Kotrc M.
        • Polak J.
        • Pelikanova T.
        • Bendlova B.
        • Cahova M.
        • et al.
        Availability of energetic substrates and exercise performance in heart failure with or without diabetes.
        Eur J Heart Fail. 2012; 14: 754-763
        • Mizuno Y.
        • Harada E.
        • Nakagawa H.
        • Morikawa Y.
        • Shono M.
        • Kugimiya F.
        • et al.
        The diabetic heart utilizes ketone bodies as an energy source.
        Metabolism. 2017; 77: 65-72
        • Grinblat L.
        • Pacheco Bolanos L.F.
        • Stoppani A.O.
        Decreased rate of ketone-body oxidation and decreased activity of D-3-hydroxybutyrate dehydrogenase and succinyl-CoA:3-oxo-acid CoA-transferase in heart mitochondria of diabetic rats.
        Biochem J. 1986; 240: 49-56
        • Turko I.V.
        • Marcondes S.
        • Murad F.
        Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase.
        Am J Physiol Heart Circ Physiol. 2001; 281: H2289-H2294
        • Brahma M.K.
        • Ha C.M.
        • Pepin M.E.
        • Mia S.
        • Sun Z.
        • Chatham J.C.
        • et al.
        Increased glucose availability attenuates myocardial ketone body utilization.
        J Am Heart Assoc. 2020; 9e013039
        • Russell 3rd, R.R.
        • Taegtmeyer H.
        Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.
        J Clin Invest. 1991; 87: 384-390
        • Stanley W.C.
        • Meadows S.R.
        • Kivilo K.M.
        • Roth B.A.
        • Lopaschuk G.D.
        Beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content.
        Am J Physiol Heart Circ Physiol. 2003; 285: H1626-H1631
        • Gormsen L.C.
        • Svart M.
        • Thomsen H.H.
        • Sondergaard E.
        • Vendelbo M.H.
        • Christensen N.
        • et al.
        Ketone body infusion with 3-Hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study.
        J Am Heart Assoc. 2017; 6e005066
        • Ho K.L.
        • Zhang L.
        • Wagg C.
        • Al Batran R.
        • Gopal K.
        • Levasseur J.
        • et al.
        Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
        Cardiovasc Res. 2019; 115: 1606-1616
        • Taggart A.K.
        • Kero J.
        • Gan X.
        • Cai T.Q.
        • Cheng K.
        • Ippolito M.
        • et al.
        (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G.
        J Biol Chem. 2005; 280: 26649-26652
        • Polak J.
        • Kotrc M.
        • Wedellova Z.
        • Jabor A.
        • Malek I.
        • Kautzner J.
        • et al.
        Lipolytic effects of B-type natriuretic peptide 1-32 in adipose tissue of heart failure patients compared with healthy controls.
        J Am Coll Cardiol. 2011; 58: 1119-1125
        • Linden M.A.
        • Ross T.T.
        • Beebe D.A.
        • Gorgoglione M.F.
        • Hamilton K.L.
        • Miller B.F.
        • et al.
        The combination of exercise training and sodium-glucose cotransporter-2 inhibition improves glucose tolerance and exercise capacity in a rodent model of type 2 diabetes.
        Metabolism. 2019; 97: 68-80
        • Nielsen R.
        • Moller N.
        • Gormsen L.C.
        • Tolbod L.P.
        • Hansson N.H.
        • Sorensen J.
        • et al.
        Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients.
        Circulation. 2019; 139: 2129-2141
        • Reneman R.S.
        • Van der Vusse G.J.
        Effect of fentanyl on myocardial metabolism during ischemia.
        Angiology. 1982; 33: 51-63