Highlights
- •Subclinical metabolic remodelling occurs early in the natural history of heart failure
- •Metabolic remodelling is characterized by an increased capacity to utilize ketone bodies, despite normal ketone body levels
- •Ketones utilization correlates with the degree of cardiac dysfunction and remodelling
- •Ketones myocardial utilization is uncoupled from use of other energetic substrates, without evidence of substrate competition
- •Ketone Ester drink is a feasible approach to achieve ketosis and should be tested as a potential therapeutic modality in HF
Abstract
Aims
Upregulation of ketone body (β-hydroxybutyrate, βHB) utilization has been documented
in human end-stage heart failure (HF), but is unclear if this is due to intrinsic
cardiac metabolic remodeling or a HF-related catabolic state. This study sought to
evaluate the maximal ketone body utilization capacity and its determinants in controls
and in patients with moderate HF and reduced ejection fraction (HFrEF).
Methods and results
19 HFrEF patients and 9 controls underwent sampling from the arterial circulation
(A) and coronary sinus (CS) to measure transmyocardial extraction of energy-providing
substrates and oxygen. In a separate experiment, measurements were performed 80-min
after oral administration of 25 g of ketone ester (KE, (R)-3-hydroxybutyl(R)-3-hydroxybutyrate) drink in 11 HFrEF and 6 control subjects. There were no statistically
significant differences in fasting substrate levels and fractional extractions between
HF and controls. Administration of KE increased βHB by 12.9-fold, revealing an increased
ability to utilize ketones in HFrEF as compared to controls (fractional extraction,
FE%: 52 vs 39%, p = 0.035). βHB FE% correlated directly with βHB myocardial delivery
(r = 0.90), LV mass (r = 0.56), LV diameter (r = 0.65) and inversely with LV EF (−0.59)
(all p < 0.05). βHB FE% positively correlated with lactate FE% (p < 0.01), but not
with FFA or glucose FE%, arguing against substrate competition.
Conclusions
Acute nutritional ketosis enhances βHB extraction in patients with HFrEF compared
to controls, and this enhancement correlates with degree of cardiac dysfunction and
remodeling. Data suggest that subclinical metabolic remodeling occurs early in HF
progression. Further studies are needed to determine whether exogenous ketones may
have a potential therapeutic role.
Graphical Abstract

Graphical Abstract
Abbreviations:
FFA (free fatty acids), KB (ketone bodies), KE (ketone ester), FE% (fractional extraction), βHB (β-hydroxybutyrate)Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Metabolism - Clinical and ExperimentalAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Metabolic origins of heart failure.JACC Basic Transl Sci. 2017; 2: 297-310
- Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy.J Am Coll Cardiol. 2002; 40: 271-277
- Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates.Circ Res. 2016; 119: 1173-1176
- Ketone body metabolism and cardiovascular disease.Am J Physiol Heart Circ Physiol. 2013; 304: H1060-H1076
- Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics.Cell Metab. 2017; 25: 262-284
- Fuel metabolism in starvation.Annu Rev Nutr. 2006; 26: 1-22
- Blood ketone bodies in congestive heart failure.J Am Coll Cardiol. 1996; 28: 665-672
- Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism.Am J Med. 1954; 16: 504-515
- Insulin, ketone bodies, and mitochondrial energy transduction.FASEB J. 1995; 9: 651-658
- The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense.JCI Insight. 2019; 4
- Implications of altered ketone metabolism and therapeutic ketosis in heart failure.Circulation. 2020; 141: 1800-1812
- Shift to fatty substrate utilization in response to sodium-glucose Cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes.Diabetes. 2016; 65: 1190-1195
- Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction.Eur J Heart Fail. 2019; 21: 862-873
- Cardiovascular and renal outcomes with Empagliflozin in heart failure.N Engl J Med. 2020; 383: 1413-1424
- Dapagliflozin in patients with heart failure and reduced ejection fraction.N Engl J Med. 2019; 381: 1995-2008
- Evidence for Intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure.Circulation. 2016; 133: 706-716
- The failing heart relies on ketone bodies as a fuel.Circulation. 2016; 133: 698-705
- Increased cardiac uptake of ketone bodies and free fatty acids in human heart failure and hypertrophic left ventricular remodeling.Circ Heart Fail. 2018; 11e004953
- Ketones step to the plate: a game changer for metabolic remodeling in heart failure?.Circulation. 2016; 133: 689-691
- On the metabolism of exogenous ketones in humans.Front Physiol. 2017; 8: 848
- Nutritional ketosis alters fuel preference and thereby endurance performance in athletes.Cell Metab. 2016; 24: 256-268
- The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease.Nat Med. 2015; 21: 263-269
- Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor.Science. 2013; 339: 211-214
- Fatty acid oxidation enzyme gene expression is downregulated in the failing heart.Circulation. 1996; 94: 2837-2842
- Altered systemic ketone body metabolism in advanced heart failure.Tex Heart Inst J. 2011; 38: 533-538
- Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling.PLoS One. 2009; 4e7533
- Comprehensive quantification of fuel use by the failing and nonfailing human heart.Science. 2020; 370: 364-368
- Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin.J Cachexia Sarcopenia Muscle. 2020; https://doi.org/10.1002/jcsm.12631
- Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling.Mol Metab. 2014; 3: 754-769
- Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure.Circ Heart Fail. 2017; 10e004417
- Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the translational research Committee of the Heart Failure Association-European Society of cardiology.Eur Heart J. 2018; 39: 4243-4254
- Availability of energetic substrates and exercise performance in heart failure with or without diabetes.Eur J Heart Fail. 2012; 14: 754-763
- The diabetic heart utilizes ketone bodies as an energy source.Metabolism. 2017; 77: 65-72
- Decreased rate of ketone-body oxidation and decreased activity of D-3-hydroxybutyrate dehydrogenase and succinyl-CoA:3-oxo-acid CoA-transferase in heart mitochondria of diabetic rats.Biochem J. 1986; 240: 49-56
- Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase.Am J Physiol Heart Circ Physiol. 2001; 281: H2289-H2294
- Increased glucose availability attenuates myocardial ketone body utilization.J Am Heart Assoc. 2020; 9e013039
- Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.J Clin Invest. 1991; 87: 384-390
- Beta-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content.Am J Physiol Heart Circ Physiol. 2003; 285: H1626-H1631
- Ketone body infusion with 3-Hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study.J Am Heart Assoc. 2017; 6e005066
- Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.Cardiovasc Res. 2019; 115: 1606-1616
- (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G.J Biol Chem. 2005; 280: 26649-26652
- Lipolytic effects of B-type natriuretic peptide 1-32 in adipose tissue of heart failure patients compared with healthy controls.J Am Coll Cardiol. 2011; 58: 1119-1125
- The combination of exercise training and sodium-glucose cotransporter-2 inhibition improves glucose tolerance and exercise capacity in a rodent model of type 2 diabetes.Metabolism. 2019; 97: 68-80
- Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients.Circulation. 2019; 139: 2129-2141
- Effect of fentanyl on myocardial metabolism during ischemia.Angiology. 1982; 33: 51-63
Article info
Publication history
Published online: November 25, 2020
Accepted:
November 23,
2020
Received:
June 8,
2020
Identification
Copyright
© 2020 Elsevier Inc. All rights reserved.