Advertisement
Basic Science| Volume 122, 154823, September 2021

Suppressor of cytokine signalling-2 controls hepatic gluconeogenesis and hyperglycemia by modulating JAK2/STAT5 signalling pathway

  • Author Footnotes
    1 These authors contributed equally to this work.
    Xu Zhang
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Yuan Zhuang
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Tian Qin
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • Meijia Chang
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • Xuetao Ji
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • Ning Wang
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • Zhilei Zhang
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • Hongwen Zhou
    Affiliations
    Department of Endocrinology, The First affiliated Hospital of Nanjing Medical University, Nanijing 210029, China
    Search for articles by this author
  • Qian Wang
    Correspondence
    Corresponding authors at: The Key Laboratory of Rare Metabolic Disease, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China.
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • John Zhong Li
    Correspondence
    Corresponding authors at: The Key Laboratory of Rare Metabolic Disease, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China.
    Affiliations
    The Key Laboratory of Rare Metabolic Diseases, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.

      Highlights

      • SOCS2 expression in liver is reduced in fasted or diabetic mice.
      • SOCS2 regulates hepatic gluconeogenesis via modulating JAK2/STAT5 Signalling pathway.
      • SOCS2 can be strongly induced by metformin treatment.
      • Ablation of SOCS2 attenuates suppressing effects of metformin on hepatic gluconeogenesis.

      Abstract

      Hepatic gluconeogenesis plays a crucial role in maintaining blood glucose homeostasis in mammals. Globe knockout of suppressor of cytokine signalling-2 (SOCS2), a feedback inhibitor of cytokine signalling, has been shown resistant to high-fat-diet (HFD)-induced hepatic steatosis with impaired glucose tolerance in mice. However, the underlying mechanism of SOCS2 regulates hepatic glucose homeostasis still undefined. In the present study, we demonstrated that the hepatic SOCS2 expression is markedly reduced in fasted C57BL/6J mice or db/db mice. Moreover, hepatic SOCS2 expression levels are induced by metformin treatment. Ablation of SOCS2 attenuates suppressing effects of metformin on gluconeogenesis in hepatocytes. Gain- and loss-of-function studies indicated that SOCS2 regulates hepatic gluconeogenic genes expression and glucose output by mediating JAK2/STAT5 signalling pathway in db/db mice. Mechanistically, we observed that SOCS2 inactivates STAT5 by attenuating the interaction between JAK2 and STAT5, which in turn reduces hepatic gluconeogenesis. The present study reveals a critical role of SOCS2 in regulating hepatic gluconeogenesis. The inhibitory effect of metformin on gluconeogenesis is mediated, at least in part, by upregulating SOCS2 and therefore reducing hepatic gluconeogenic genes expression. SOCS2 may represent a new therapeutic target for the treatment of diabetes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bechmann L.P.
        • Hannivoort R.A.
        • Gerken G.
        • Hotamisligil G.S.
        • Trauner M.
        • Canbay A.
        The interaction of hepatic lipid and glucose metabolism in liver diseases.
        J Hepatol. 2012; 56: 952-964
        • Turnley A.M.
        • Faux C.H.
        • Rietze R.L.
        • Coonan J.R.
        • Bartlett P.F.
        Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling.
        Nat Neurosci. 2002; 5: 1155-1162
        • Wang Y.
        • Yan S.
        • Xiao B.
        • Zuo S.
        • Zhang Q.
        • Chen G.
        • et al.
        Prostaglandin F2alpha facilitates hepatic glucose production through CaMKIIgamma/p38/FOXO1 signaling pathway in fasting and obesity.
        Diabetes. 2018; 67: 1748-1760
        • Trengove M.C.
        • Ward A.C.
        SOCS proteins in development and disease.
        Am. J. Clin. Exp. Immunol. 2013; 2: 1-29
        • Starr R.
        • Hilton D.J.
        Negative regulation of the JAK/STAT pathway.
        in: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 21. 1999: 47-52
        • Durham G.A.
        • Williams J.J.L.
        • Nasim M.T.
        • Palmer T.M.
        Targeting SOCS proteins to control JAK-STAT signalling in disease.
        Trends Pharmacol Sci. 2019; 40: 298-308
        • Greenhalgh C.J.
        • Miller M.E.
        • Hilton D.J.
        • Lund P.K.
        Suppressors of cytokine signaling: relevance to gastrointestinal function and disease.
        Gastroenterology. 2002; 123: 2064-2081
        • Ueki K.
        • Kondo T.
        • Kahn C.R.
        Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms.
        Mol Cell Biol. 2004; 24: 5434-5446
        • Gaudy A.M.
        • Clementi A.H.
        • Campbell J.S.
        • Smrcka A.V.
        • Mooney R.A.
        Suppressor of cytokine signaling-3 is a glucagon-inducible inhibitor of PKA activity and gluconeogenic gene expression in hepatocytes.
        J Biol Chem. 2010; 285: 41356-41365
        • Ramadoss P.
        • Unger-Smith N.E.
        • Lam F.S.
        • Hollenberg A.N.
        STAT3 targets the regulatory regions of gluconeogenic genes in vivo.
        Mol Endocrinol. 2009; 23: 827-837
        • Wang C.
        • Dai J.
        • Yang M.
        • Deng G.
        • Xu S.
        • Jia Y.
        • et al.
        Silencing of FGF-21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT3-SOCS3 signal.
        FEBS J. 2014; 281: 2136-2147
        • Zadjali F.
        • Santana-Farre R.
        • Vesterlund M.
        • Carow B.
        • Mirecki-Garrido M.
        • Hernandez-Hernandez I.
        • et al.
        SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice.
        FASEB J. 2012; 26: 3282-3291
        • Miller M.E.
        • Michaylira C.Z.
        • Simmons J.G.
        • Ney D.M.
        • Dahly E.M.
        • Heath J.K.
        • et al.
        Suppressor of cytokine signaling-2: a growth hormone-inducible inhibitor of intestinal epithelial cell proliferation.
        Gastroenterology. 2004; 127: 570-581
        • Kato H.
        • Nomura K.
        • Osabe D.
        • Shinohara S.
        • Mizumori O.
        • Katashima R.
        • et al.
        Association of single-nucleotide polymorphisms in the suppressor of cytokine signaling 2 (SOCS2) gene with type 2 diabetes in the Japanese.
        Genomics. 2006; 87: 446-458
        • Chen J.
        • Zhang Z.
        • Wang N.
        • Guo M.
        • Chi X.
        • Pan Y.
        • et al.
        Role of HDAC9-FoxO1 Axis in the transcriptional program associated with hepatic gluconeogenesis.
        Sci Rep. 2017; 7: 6102
        • Cui A.
        • Fan H.
        • Zhang Y.
        • Zhang Y.
        • Niu D.
        • Liu S.
        • et al.
        Dexamethasone-induced Kruppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia.
        J Clin Invest. 2019; 130: 2266-2278
        • Luo J.
        • Deng Z.L.
        • Luo X.
        • Tang N.
        • Song W.X.
        • Chen J.
        • et al.
        A protocol for rapid generation of recombinant adenoviruses using the AdEasy system.
        Nat Protoc. 2007; 2: 1236-1247
        • Guo L.
        • Zhang P.
        • Chen Z.
        • Xia H.
        • Li S.
        • Zhang Y.
        • et al.
        Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression.
        J Clin Invest. 2017; 127: 4449-4461
        • Chen S.
        • Qian J.
        • Shi X.
        • Gao T.
        • Liang T.
        • Liu C.
        Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein.
        Mol Endocrinol. 2014; 28: 1987-1998
        • Wang Q.
        • Chen J.
        • Wang Y.
        • Han X.
        • Chen X.
        Hepatitis C virus induced a novel apoptosis-like death of pancreatic beta cells through a caspase 3-dependent pathway.
        PloS one. 2012; 7e38522
        • Dodington D.W.
        • Desai H.R.
        • Woo M.
        JAK/STAT - emerging players in metabolism.
        Trends Endocrinol. Metab. 2018; 29: 55-65
        • Hunter R.W.
        • Hughey C.C.
        • Lantier L.
        • Sundelin E.I.
        • Peggie M.
        • Zeqiraj E.
        • et al.
        Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.
        Nat Med. 2018; 24: 1395-1406
        • Ouyang X.
        • Fujimoto M.
        • Nakagawa R.
        • Serada S.
        • Tanaka T.
        • Nomura S.
        • et al.
        SOCS-2 interferes with myotube formation and potentiates osteoblast differentiation through upregulation of JunB in C2C12 cells.
        J Cell Physiol. 2006; 207: 428-436
        • Ransome M.I.
        • Goldshmit Y.
        • Bartlett P.F.
        • Waters M.J.
        • Turnley A.M.
        Comparative analysis of CNS populations in knockout mice with altered growth hormone responsiveness.
        Eur J Neurosci. 2004; 19: 2069-2079
        • Zhou Y.
        • Zhang Z.
        • Wang N.
        • Chen J.
        • Zhang X.
        • Guo M.
        • et al.
        Suppressor of cytokine signalling-2 limits IGF1R-mediated regulation of epithelial-mesenchymal transition in lung adenocarcinoma.
        Cell Death Dis. 2018; 9: 429
        • Sen B.
        • Peng S.
        • Woods D.M.
        • Wistuba I.
        • Bell D.
        • El-Naggar A.K.
        • et al.
        STAT5A-mediated SOCS2 expression regulates Jak2 and STAT3 activity following c-Src inhibition in head and neck squamous carcinoma.
        Clin. Cancer Res. 2012; 18: 127-139
        • Schafranek L.
        • Nievergall E.
        • Powell J.A.
        • Hiwase D.K.
        • Leclercq T.
        • Hughes T.P.
        • et al.
        Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia.
        Leukemia. 2015; 29: 76-85
        • Gurzov E.N.
        • Tran M.
        • Fernandez-Rojo M.A.
        • Merry T.L.
        • Zhang X.
        • Xu Y.
        • et al.
        Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2.
        Cell Metab. 2014; 20: 85-102
        • Rui L.
        • Yuan M.
        • Frantz D.
        • Shoelson S.
        • White M.F.
        SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2.
        J Biol Chem. 2002; 277: 42394-42398
        • Ram P.A.
        • Waxman D.J.
        SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms.
        J Biol Chem. 1999; 274: 35553-35561
        • Hansen J.A.
        • Lindberg K.
        • Hilton D.J.
        • Nielsen J.H.
        • Billestrup N.
        Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins.
        Mol Endocrinol. 1999; 13: 1832-1843
        • Rena G.
        • Pearson E.R.
        • Sakamoto K.
        Molecular mechanism of action of metformin: old or new insights?.
        Diabetologia. 2013; 56: 1898-1906
        • Zhou G.
        • Myers R.
        • Li Y.
        • Chen Y.
        • Shen X.
        • Fenyk-Melody J.
        • et al.
        Role of AMP-activated protein kinase in mechanism of metformin action.
        J Clin Invest. 2001; 108: 1167-1174
        • Hundal R.S.
        • Krssak M.
        • Dufour S.
        • Laurent D.
        • Lebon V.
        • Chandramouli V.
        • et al.
        Mechanism by which metformin reduces glucose production in type 2 diabetes.
        Diabetes. 2000; 49: 2063-2069
        • He L.
        • Sabet A.
        • Djedjos S.
        • Miller R.
        • Sun X.
        • Hussain M.A.
        • et al.
        Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein.
        Cell. 2009; 137: 635-646
        • Shaw R.J.
        • Lamia K.A.
        • Vasquez D.
        • Koo S.H.
        • Bardeesy N.
        • Depinho R.A.
        • et al.
        The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.
        Science. 2005; 310: 1642-1646
        • Kim Y.D.
        • Kim Y.H.
        • Cho Y.M.
        • Kim D.K.
        • Ahn S.W.
        • Lee J.M.
        • et al.
        Metformin ameliorates IL-6-induced hepatic insulin resistance via induction of orphan nuclear receptor small heterodimer partner (SHP) in mouse models.
        Diabetologia. 2012; 55: 1482-1494
        • Takayama H.
        • Misu H.
        • Iwama H.
        • Chikamoto K.
        • Saito Y.
        • Murao K.
        • et al.
        Metformin suppresses expression of the selenoprotein P gene via an AMP-activated kinase (AMPK)/FoxO3a pathway in H4IIEC3 hepatocytes.
        J Biol Chem. 2014; 289: 335-345
        • Sato A.
        • Sunayama J.
        • Okada M.
        • Watanabe E.
        • Seino S.
        • Shibuya K.
        • et al.
        Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK.
        Stem Cells Transl Med. 2012; 1: 811-824
        • Hu T.
        • Chung Y.M.
        • Guan M.
        • Ma M.
        • Ma J.
        • Berek J.S.
        • et al.
        Reprogramming ovarian and breast cancer cells into non-cancerous cells by low-dose metformin or SN-38 through FOXO3 activation.
        Sci Rep. 2014; 4: 5810