Advertisement
Article from the Diabetes: State-of-the-art 100 years after the discovery of insulin Special Issue, Edited by Stergios Polyzos and Christos Mantzoros| Volume 123, 154844, October 2021

Download started.

Ok

Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease

      Abstract

      Type 2 diabetes (T2D) and Non-Alcoholic Fatty Liver Disease (NAFLD) are pathologies whose prevalence continues to increase worldwide. Both diseases are precipitated by an excessive caloric intake, which promotes insulin resistance and fatty liver. The role of the intestine and its crosstalk with the liver in the development of these metabolic diseases is receiving increasing attention. Alterations in diet-intestinal microbiota interactions lead to the dysregulation of intestinal functions, resulting in altered metabolite and energy substrate production and increased intestinal permeability. Connected through the portal circulation, these changes in intestinal functions impact the liver and other metabolic organs, such as visceral adipose tissue, hence participating in the development of insulin resistance, and worsening T2D and NAFLD. Thus, targeting the intestine may be an efficient therapeutic approach to cure T2D and NAFLD.
      In this review, we will first introduce the signaling pathways linking T2D and NAFLD. Next, we will address the role of the gut-liver crosstalk in the development of T2D and NAFLD, with a particular focus on the gut microbiota and the molecular pathways behind the increased intestinal permeability and inflammation. Finally, we will summarize the therapeutic strategies which target the gut and its functions and are currently used or under development to treat T2D and NAFLD.

      Abbreviations:

      ALT (alanine aminotransferase), BA (bile acids), CYP7A1 (cholesterol 7 alpha-hydroxylase), DDP-4 (dipeptidyl peptidase-4), FGF (fibroblast growth factor), FMT (fecal microbiota transplantation), FXR (farnesoid X receptor), GLP-1 (glucagon-like peptide-1), GLP-1R (glucagon-like peptide-1 receptor), HFD (high fat diet), HOMA-IR (homeostatic model assessment of insulin resistance), IgA (immunoglobulin A), IR (insulin resistance), JAM-A (junctional adhesion molecule A), LPS (lipopolysaccharide), MRI (magnetic resonance imaging), NAFL/NAFLD (non-alcoholic fatty liver/disease), NAS (non-alcoholic fatty liver disease activity score), NASH (non-alcoholic steatohepatitis), OCA (obeticholic acid), SCFA (short chain fatty acid), T2D (type 2 diabetes), TG (triglycerides), TGR5 (takeda g-protein-coupled receptor 5)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Evans M.
        • Morgan A.R.
        • Patel D.
        • Dhatariya K.
        • Greenwood S.
        • Newland-Jones P.
        • et al.
        Risk prediction of the diabetes missing million: identifying individuals at high risk of diabetes and related complications.
        Diabetes Ther. 2021 Jan; 12: 87-105
        • Ahlqvist E.
        • Storm P.
        • Käräjämäki A.
        • Martinell M.
        • Dorkhan M.
        • Carlsson A.
        • et al.
        Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables.
        Lancet Diabetes Endocrinol. 2018 May; 6: 361-369
        • Santoleri D.
        • Titchenell P.M.
        Resolving the paradox of hepatic insulin resistance.
        Cell Mol Gastroenterol Hepatol. 2019; 7: 447-456
        • Haas J.T.
        • Francque S.
        • Staels B.
        Pathophysiology and mechanisms of nonalcoholic fatty liver disease.
        Annu Rev Physiol. 2016; 78: 181-205
        • Younossi Z.M.
        • Golabi P.
        • de Avila L.
        • Paik J.M.
        • Srishord M.
        • Fukui N.
        • et al.
        The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis.
        J Hepatol. 2019 Oct 1; 71: 793-801
        • Eslam M.
        • Newsome P.N.
        • Sarin S.K.
        • Anstee Q.M.
        • Targher G.
        • Romero-Gomez M.
        • et al.
        A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement.
        J Hepatol. 2020 Jul; 73: 202-209
        • Mantovani A.
        • Petracca G.
        • Beatrice G.
        • Tilg H.
        • Byrne C.D.
        • Targher G.
        Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: an updated meta-analysis of 501 022 adult individuals.
        Gut. 2021 May 1; 70: 962-969
        • Lonardo A.
        • Nascimbeni F.
        • Mantovani A.
        • Targher G.
        Hypertension, diabetes, atherosclerosis and NASH: cause or consequence?.
        J Hepatol. 2018 Feb; 68: 335-352
        • Sheka A.C.
        • Adeyi O.
        • Thompson J.
        • Hameed B.
        • Crawford P.A.
        • Ikramuddin S.
        Nonalcoholic steatohepatitis: a review.
        JAMA. 2020 24; 323: 1175-1183
        • Harrison S.A.
        • Ratziu V.
        • Boursier J.
        • Francque S.
        • Bedossa P.
        • Majd Z.
        • et al.
        A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study.
        Lancet Gastroenterol Hepatol. 2020 Nov 1; 5: 970-985
        • Allen A.M.
        • Shah V.H.
        • Therneau T.M.
        • Venkatesh S.K.
        • Mounajjed T.
        • Larson J.J.
        • et al.
        Multiparametric magnetic resonance elastography improves the detection of NASH regression following bariatric surgery.
        Hepatol Commun. 2020 Feb; 4: 185-192
        • Petersen M.C.
        • Shulman G.I.
        Mechanisms of insulin action and insulin resistance.
        Physiol Rev. 2018 Oct 1; 98: 2133-2223
        • Khan R.S.
        • Bril F.
        • Cusi K.
        • Newsome P.N.
        Modulation of insulin resistance in nonalcoholic fatty liver disease.
        Hepatology. 2019; 70: 711-724
        • Donnelly K.L.
        • Smith C.I.
        • Schwarzenberg S.J.
        • Jessurun J.
        • Boldt M.D.
        • Parks E.J.
        Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.
        J Clin Invest. 2005 May 2; 115: 1343-1351
        • Bezy O.
        • Tran T.T.
        • Pihlajamäki J.
        • Suzuki R.
        • Emanuelli B.
        • Winnay J.
        • et al.
        PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans.
        J Clin Invest. 2011 Jun; 121: 2504-2517
        • Perry R.J.
        • Samuel V.T.
        • Petersen K.F.
        • Shulman G.I.
        The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes.
        Nature. 2014 Jun 5; 510: 84-91
        • Holland W.L.
        • Bikman B.T.
        • Wang L.-P.
        • Yuguang G.
        • Sargent K.M.
        • Bulchand S.
        • et al.
        Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice.
        J Clin Invest. 2011 May; 121: 1858-1870
        • Jiang C.
        • Xie C.
        • Li F.
        • Zhang L.
        • Nichols R.G.
        • Krausz K.W.
        • et al.
        Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease.
        J Clin Invest. 2015 Jan 2; 125: 386-402
        • Bikman B.T.
        • Summers S.A.
        Ceramides as modulators of cellular and whole-body metabolism.
        J Clin Invest. 2011 Nov; 121: 4222-4230
        • Pihlajamäki J.
        • Kuulasmaa T.
        • Kaminska D.
        • Simonen M.
        • Kärjä V.
        • Grönlund S.
        • et al.
        Serum interleukin 1 receptor antagonist as an independent marker of non-alcoholic steatohepatitis in humans.
        J Hepatol. 2012 Mar; 56: 663-670
        • Schwabe R.F.
        • Luedde T.
        Apoptosis and necroptosis in the liver: a matter of life and death.
        Nat Rev Gastroenterol Hepatol. 2018 Dec; 15: 738-752
        • Shulman G.I.
        Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease.
        N Engl J Med. 2014 Sep 18; 371: 1131-1141
        • Haas J.T.
        • Vonghia L.
        • Mogilenko D.A.
        • Verrijken A.
        • Molendi-Coste O.
        • Fleury S.
        • et al.
        Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution.
        Nat Metab. 2019 Jun; 1: 604-614
        • Breuer D.A.
        • Pacheco M.C.
        • Washington M.K.
        • Montgomery S.A.
        • Hasty A.H.
        • Kennedy A.J.
        CD8+ T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease.
        Am J Physiol Gastrointest Liver Physiol. 2020 Feb 1; 318: G211-G224
        • Dudek M.
        • Pfister D.
        • Donakonda S.
        • Filpe P.
        • Schneider A.
        • Laschinger M.
        • et al.
        Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH.
        Nature. 2021 Mar; 24
        • Bhattacharjee J.
        • Kirby M.
        • Softic S.
        • Miles L.
        • Salazar-Gonzalez R.-M.
        • Shivakumar P.
        • et al.
        Hepatic natural killer T-cell and CD8+ T-cell signatures in mice with nonalcoholic steatohepatitis.
        Hepatol Commun. 2017 Jun; 1: 299-310
        • Arriazu E.
        • Ge X.
        • Leung T.-M.
        • Magdaleno F.
        • Lopategi A.
        • Lu Y.
        • et al.
        Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury.
        Gut. 2017 Jun; 66: 1123-1137
        • Petersen K.F.
        • Dufour S.
        • Savage D.B.
        • Bilz S.
        • Solomon G.
        • Yonemitsu S.
        • et al.
        The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome.
        PNAS. 2007 Jul 31; 104: 12587-12594
        • Hsieh Y.-C.
        • Joo S.K.
        • Koo B.K.
        • Lin H.-C.
        • Kim W.
        Muscle alterations are independently associated with significant fibrosis in patients with nonalcoholic fatty liver disease.
        Liver Int. 2021 Mar; 41: 494-504
        • Nachit M.
        • Kwanten W.J.
        • Thissen J.-P.
        • Beeck B.O.D.
        • Gaal L.V.
        • Vonghia L.
        • et al.
        Muscle fat content is strongly associated with NASH: a longitudinal study in patients with morbid obesity.
        J Hepatol. 2021 Apr 14; 75: 292-301
        • Seo D.H.
        • Lee Y.-H.
        • Park S.W.
        • Choi Y.J.
        • Huh B.W.
        • Lee E.
        • et al.
        Sarcopenia is associated with non-alcoholic fatty liver disease in men with type 2 diabetes.
        Diabetes Metab. 2020 Oct; 46: 362-369
        • Targher G.
        • Day C.P.
        • Bonora E.
        Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease.
        N Engl J Med. 2010 Sep 30; 363: 1341-1350
        • Targher G.
        • Lonardo A.
        • Byrne C.D.
        Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus.
        Nat Rev Endocrinol. 2018 Feb; 14: 99-114
        • Mantovani A.
        • Turino T.
        • Lando M.G.
        • Gjini K.
        • Byrne C.D.
        • Zusi C.
        • et al.
        Screening for non-alcoholic fatty liver disease using liver stiffness measurement and its association with chronic kidney disease and cardiovascular complications in patients with type 2 diabetes.
        Diabetes Metab. 2020 Sep; 46: 296-303
        • Weinstein G.
        • Zelber-Sagi S.
        • Preis S.R.
        • Beiser A.S.
        • DeCarli C.
        • Speliotes E.K.
        • et al.
        Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the Framingham Study.
        JAMA Neurol. 2018 Jan; 75: 97-104
        • Weinstein G.
        • Davis-Plourde K.
        • Himali J.J.
        • Zelber-Sagi S.
        • Beiser A.S.
        • Seshadri S.
        Non-alcoholic fatty liver disease, liver fibrosis score and cognitive function in middle-aged adults: the Framingham study.
        Liver Int. 2019 Sep; 39: 1713-1721
        • Stahel P.
        • Xiao C.
        • Nahmias A.
        • Lewis G.F.
        Role of the gut in diabetic Dyslipidemia.
        Front Endocrinol (Lausanne). 2020; 11
        • Veilleux A.
        • Grenier E.
        • Marceau P.
        • Carpentier A.C.
        • Richard D.
        • Levy E.
        Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects.
        Arterioscler Thromb Vasc Biol. 2014 Mar; 34: 644-653
        • Nogueira J.-P.
        • Maraninchi M.
        • Béliard S.
        • Padilla N.
        • Duvillard L.
        • Mancini J.
        • et al.
        Absence of acute inhibitory effect of insulin on chylomicron production in type 2 diabetes.
        Arterioscler Thromb Vasc Biol. 2012 Apr; 32: 1039-1044
        • Nass K.J.
        • van den Berg E.H.
        • Faber K.N.
        • Schreuder T.C.M.A.
        • Blokzijl H.
        • Dullaart R.P.F.
        High prevalence of apolipoprotein B dyslipoproteinemias in non-alcoholic fatty liver disease: the lifelines cohort study.
        Metabolism. 2017 Jul; 72: 37-46
        • Tilg H.
        • Moschen A.R.
        • Roden M.
        NAFLD and diabetes mellitus.
        Nat Rev Gastroenterol Hepatol. 2017 Jan; 14: 32-42
        • Luukkonen P.K.
        • Zhou Y.
        • Sädevirta S.
        • Leivonen M.
        • Arola J.
        • Orešič M.
        • et al.
        Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease.
        J Hepatol. 2016 May; 64: 1167-1175
        • Pelaseyed T.
        • Bergström J.H.
        • Gustafsson J.K.
        • Ermund A.
        • Birchenough G.M.H.
        • Schütte A.
        • et al.
        The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system.
        Immunol Rev. 2014; 260: 8-20
        • Turner J.R.
        Intestinal mucosal barrier function in health and disease.
        Nat Rev Immunol. 2009 Nov; 9: 799-809
        • Camilleri M.
        Leaky gut: mechanisms, measurement and clinical implications in humans.
        Gut. 2019 Aug; 68: 1516-1526
        • Mouries J.
        • Brescia P.
        • Silvestri A.
        • Spadoni I.
        • Sorribas M.
        • Wiest R.
        • et al.
        Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development.
        J Hepatol. 2019; 71: 1216-1228
        • Schoultz I.
        • Keita Å.V.
        The intestinal barrier and current techniques for the assessment of gut permeability.
        Cells. 2020 Aug; 17: 9(8)
        • Bosi E.
        • Molteni L.
        • Radaelli M.G.
        • Folini L.
        • Fermo I.
        • Bazzigaluppi E.
        • et al.
        Increased intestinal permeability precedes clinical onset of type 1 diabetes.
        Diabetologia. 2006 Dec; 49: 2824-2827
        • De Munck T.J.I.
        • Xu P.
        • Verwijs H.J.A.
        • Masclee A.A.M.
        • Jonkers D.
        • Verbeek J.
        • et al.
        Intestinal permeability in human nonalcoholic fatty liver disease: a systematic review and meta-analysis.
        Liver Int. 2020 Dec; 40: 2906-2916
        • Miele L.
        • Valenza V.
        • La Torre G.
        • Montalto M.
        • Cammarota G.
        • Ricci R.
        • et al.
        Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease.
        Hepatology. 2009 Jun; 49: 1877-1887
        • Rahman K.
        • Desai C.
        • Iyer S.S.
        • Thorn N.E.
        • Kumar P.
        • Liu Y.
        • et al.
        Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol.
        Gastroenterology. 2016; 151: 733-746.e12
        • Pacifico L.
        • Bonci E.
        • Marandola L.
        • Romaggioli S.
        • Bascetta S.
        • Chiesa C.
        Increased circulating zonulin in children with biopsy-proven nonalcoholic fatty liver disease.
        World J Gastroenterol. 2014 Dec 7; 20: 17107-17114
        • Cani P.D.
        • Amar J.
        • Iglesias M.A.
        • Poggi M.
        • Knauf C.
        • Bastelica D.
        • et al.
        Metabolic endotoxemia initiates obesity and insulin resistance.
        Diabetes. 2007 Jul; 56: 1761-1772
        • Sonnenburg J.L.
        • Bäckhed F.
        Diet-microbiota interactions as moderators of human metabolism.
        Nature. 2016 Jul 7; 535: 56-64
        • Ducastel S.
        • Touche V.
        • Trabelsi M.-S.
        • Boulinguiez A.
        • Butruille L.
        • Nawrot M.
        • et al.
        The nuclear receptor FXR inhibits glucagon-like peptide-1 secretion in response to microbiota-derived short-chain fatty acids.
        Sci Rep. 2020 13; 10: 174
        • Mathewson N.D.
        • Jenq R.
        • Mathew A.V.
        • Koenigsknecht M.
        • Hanash A.
        • Toubai T.
        • et al.
        Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease.
        Nat Immunol. 2016 May; 17: 505-513
        • Bäckhed F.
        • Ding H.
        • Wang T.
        • Hooper L.V.
        • Koh G.Y.
        • Nagy A.
        • et al.
        The gut microbiota as an environmental factor that regulates fat storage.
        PNAS. 2004 Nov 2; 101: 15718-15723
        • Wahlström A.
        • Sayin S.I.
        • Marschall H.-U.
        • Bäckhed F.
        Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism.
        Cell Metab. 2016 Jul 12; 24: 41-50
        • Chu H.
        • Duan Y.
        • Yang L.
        • Schnabl B.
        Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease.
        Gut. 2019 Feb; 68: 359-370
        • Qin J.
        • Li Y.
        • Cai Z.
        • Li S.
        • Zhu J.
        • Zhang F.
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012 Oct 4; 490: 55-60
        • Karlsson F.H.
        • Tremaroli V.
        • Nookaew I.
        • Bergström G.
        • Behre C.J.
        • Fagerberg B.
        • et al.
        Gut metagenome in European women with normal, impaired and diabetic glucose control.
        Nature. 2013 Jun; 498: 99-103
        • Human Microbiome Project Consortium
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012 Jun 13; 486: 207-214
        • Aron-Wisnewsky J.
        • Vigliotti C.
        • Witjes J.
        • Le P.
        • Holleboom A.G.
        • Verheij J.
        • et al.
        Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders.
        Nat Rev Gastroenterol Hepatol. 2020 May; 17: 279-297
        • Fan Y.
        • Pedersen O.
        Gut microbiota in human metabolic health and disease.
        Nat Rev Microbiol. 2021 Jan; 19: 55-71
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • Prifti E.
        • Hildebrand F.
        • Falony G.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature. 2013 Aug 29; 500: 541-546
        • Chiu C.-C.
        • Ching Y.-H.
        • Li Y.-P.
        • Liu J.-Y.
        • Huang Y.-T.
        • Huang Y.-W.
        • et al.
        Nonalcoholic fatty liver disease is exacerbated in high-fat diet-fed gnotobiotic mice by colonization with the gut microbiota from patients with nonalcoholic steatohepatitis.
        Nutrients. 2017 Nov 6; 9
        • Cani P.D.
        • de Vos W.M.
        Next-generation beneficial microbes: the case of Akkermansia muciniphila.
        Front Microbiol. 2017; 8: 1765
        • Kim S.
        • Lee Y.
        • Kim Y.
        • Seo Y.
        • Lee H.
        • Ha J.
        • et al.
        Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis.
        Appl Environ Microbiol. 2020 Mar 18; 86: e03004-19
        • Loomba R.
        • Seguritan V.
        • Li W.
        • Long T.
        • Klitgord N.
        • Bhatt A.
        • et al.
        Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease.
        Cell Metab. 2017 May 2; 25: 1054-1062.e5
        • Lelouvier B.
        • Servant F.
        • Païssé S.
        • Brunet A.-C.
        • Benyahya S.
        • Serino M.
        • et al.
        Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis.
        Hepatology. 2016 Dec; 64: 2015-2027
        • Cani P.D.
        • Bibiloni R.
        • Knauf C.
        • Waget A.
        • Neyrinck A.M.
        • Delzenne N.M.
        • et al.
        Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice.
        Diabetes. 2008 Jun 1; 57: 1470-1481
        • Carpino G.
        • Del Ben M.
        • Pastori D.
        • Carnevale R.
        • Baratta F.
        • Overi D.
        • et al.
        Increased liver localization of lipopolysaccharides in human and experimental NAFLD.
        Hepatology. 2020 Aug; 72: 470-485
        • Llorente C.
        • Schnabl B.
        The gut microbiota and liver disease.
        Cell Mol Gastroenterol Hepatol. 2015 May; 1: 275-284
        • Chaudhry K.K.
        • Shukla P.K.
        • Mir H.
        • Manda B.
        • Gangwar R.
        • Yadav N.
        • et al.
        Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice.
        J Nutr Biochem. 2016 Jan 1; 27: 16-26
        • Zhu L.
        • Baker S.S.
        • Gill C.
        • Liu W.
        • Alkhouri R.
        • Baker R.D.
        • et al.
        Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH.
        Hepatology. 2013 Feb; 57: 601-609
        • Raucy J.L.
        • Lasker J.
        • Ozaki K.
        • Zoleta V.
        Regulation of CYP2E1 by ethanol and palmitic acid and CYP4A11 by clofibrate in primary cultures of human hepatocytes.
        Toxicol Sci. 2004 Jun 1; 79: 233-241
        • Eslam M.
        • Sanyal A.J.
        • George J.
        International consensus panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease.
        Gastroenterology. 2020 May; 158: 1999-2014.e1
        • Yang G.
        • Wei J.
        • Liu P.
        • Zhang Q.
        • Tian Y.
        • Hou G.
        • et al.
        Role of the gut microbiota in type 2 diabetes and related diseases.
        Metabolism. 2021 Apr; 117: 154712
        • Furusawa Y.
        • Obata Y.
        • Fukuda S.
        • Endo T.A.
        • Nakato G.
        • Takahashi D.
        • et al.
        Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.
        Nature. 2013 Dec 19; 504: 446-450
        • Arpaia N.
        • Campbell C.
        • Fan X.
        • Dikiy S.
        • van der Veeken J.
        • deRoos P.
        • et al.
        Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.
        Nature. 2013 Dec 19; 504: 451-455
        • Zhou D.
        • Pan Q.
        • Xin F.-Z.
        • Zhang R.-N.
        • He C.-X.
        • Chen G.-Y.
        • et al.
        Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier.
        World J Gastroenterol. 2017 Jan 7; 23: 60-75
        • Isobe J.
        • Maeda S.
        • Obata Y.
        • Iizuka K.
        • Nakamura Y.
        • Fujimura Y.
        • et al.
        Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon.
        Int Immunol. 2020 Apr 12; 32: 243-258
        • Wang Z.
        • Klipfell E.
        • Bennett B.J.
        • Koeth R.
        • Levison B.S.
        • Dugar B.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011 Apr 7; 472: 57-63
        • Koh A.
        • De Vadder F.
        • Kovatcheva-Datchary P.
        • Bäckhed F.
        From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites.
        Cell. 2016 Jun 2; 165: 1332-1345
        • Koh A.
        • Molinaro A.
        • Ståhlman M.
        • Khan M.T.
        • Schmidt C.
        • Mannerås-Holm L.
        • et al.
        Microbially produced imidazole propionate impairs insulin signaling through mTORC1.
        Cell. 2018 Nov 1; 175: 947-961.e17
        • Chávez-Talavera O.
        • Tailleux A.
        • Lefebvre P.
        • Staels B.
        Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease.
        Gastroenterology. 2017 May; 152: 1679-1694.e3
        • Chávez-Talavera O.
        • Haas J.
        • Grzych G.
        • Tailleux A.
        • Staels B.
        Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: what do the human studies tell?.
        Curr Opin Lipidol. 2019 Jun; 30: 244-254
        • Sonne D.P.
        • van Nierop F.S.
        • Kulik W.
        • Soeters M.R.
        • Vilsbøll T.
        • Knop F.K.
        Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with type 2 diabetes.
        J Clin Endocrinol Metab. 2016 Aug; 101: 3002-3009
        • Brufau G.
        • Stellaard F.
        • Prado K.
        • Bloks V.W.
        • Jonkers E.
        • Boverhof R.
        • et al.
        Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism.
        Hepatology. 2010 Oct; 52: 1455-1464
        • Grzych G.
        • Chávez-Talavera O.
        • Descat A.
        • Thuillier D.
        • Verrijken A.
        • Kouach M.
        • et al.
        NASH-related increases in plasma bile acid levels depend on insulin resistance.
        JHEP Rep. 2021 Apr; 3: 100222
        • Caussy C.
        • Hsu C.
        • Singh S.
        • Bassirian S.
        • Kolar J.
        • Faulkner C.
        • et al.
        Serum bile acid patterns are associated with the presence of NAFLD in twins, and dose-dependent changes with increase in fibrosis stage in patients with biopsy-proven NAFLD.
        Aliment Pharmacol Ther. 2019 Jan; 49: 183-193
        • Finn P.D.
        • Rodriguez D.
        • Kohler J.
        • Jiang Z.
        • Wan S.
        • Blanco E.
        • et al.
        Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice.
        Am J Physiol Gastrointest Liver Physiol. 2019 Mar 1; 316: G412-G424
        • Wang Y.-D.
        • Chen W.-D.
        • Yu D.
        • Forman B.M.
        • Huang W.
        The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice.
        Hepatology. 2011 Oct; 54: 1421-1432
        • Alvarez-Sola G.
        • Uriarte I.
        • Latasa M.U.
        • Fernandez-Barrena M.G.
        • Urtasun R.
        • Elizalde M.
        • et al.
        Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration.
        Gut. 2017 Oct 1; 66: 1818-1828
        • Zhou M.
        • Learned R.M.
        • Rossi S.J.
        • DePaoli A.M.
        • Tian H.
        • Ling L.
        Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice.
        Hepatol Commun. 2017 Dec; 1: 1024-1042
        • Markham A.
        • Keam S.J.
        Obeticholic acid: first global approval.
        Drugs. 2016 Aug; 76: 1221-1226
        • Neuschwander-Tetri B.A.
        • Loomba R.
        • Sanyal A.J.
        • Lavine J.E.
        • Van Natta M.L.
        • Abdelmalek M.F.
        • et al.
        Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial.
        Lancet. 2015 Mar 14; 385: 956-965
        • Chianelli D.
        • Rucker P.V.
        • Roland J.
        • Tully D.C.
        • Nelson J.
        • Liu X.
        • et al.
        Nidufexor (LMB763), a novel FXR modulator for the treatment of nonalcoholic steatohepatitis.
        J Med Chem. 2020 Apr 23; 63: 3868-3880
        • Tully D.C.
        • Rucker P.V.
        • Chianelli D.
        • Williams J.
        • Vidal A.
        • Alper P.B.
        • et al.
        Discovery of Tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic Steatohepatitis (NASH).
        J Med Chem. 2017 Dec 28; 60: 9960-9973
        • Prawitt J.
        • Abdelkarim M.
        • Stroeve J.H.M.
        • Popescu I.
        • Duez H.
        • Velagapudi V.R.
        • et al.
        Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity.
        Diabetes. 2011 Jul 1; 60: 1861-1871
        • Trabelsi M.-S.
        • Daoudi M.
        • Prawitt J.
        • Ducastel S.
        • Touche V.
        • Sayin S.I.
        • et al.
        Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.
        Nat Commun. 2015 Jul 2; 6: 1-13
        • Li F.
        • Jiang C.
        • Krausz K.W.
        • Li Y.
        • Albert I.
        • Hao H.
        • et al.
        Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity.
        Nat Commun. 2013 Sep 24; 4: 2384
        • Jiang C.
        • Xie C.
        • Lv Y.
        • Li J.
        • Krausz K.W.
        • Shi J.
        • et al.
        Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction.
        Nat Commun. 2015 Dec 15; 6: 1-18
        • Inagaki T.
        • Moschetta A.
        • Lee Y.-K.
        • Peng L.
        • Zhao G.
        • Downes M.
        • et al.
        Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
        Proc Natl Acad Sci U S A. 2006 Mar 7; 103: 3920-3925
        • Sinal C.J.
        • Tohkin M.
        • Miyata M.
        • Ward J.M.
        • Lambert G.
        • Gonzalez F.J.
        Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.
        Cell. 2000 Sep 15; 102: 731-744
        • Lueschow S.R.
        • McElroy S.J.
        The Paneth cell: the curator and defender of the immature small intestine.
        Front Immunol. 2020; 11: 587
        • Reboldi A.
        • Cyster J.G.
        Peyer’s patches: organizing B-cell responses at the intestinal frontier.
        Immunol Rev. 2016 May; 271: 230-245
        • Magri G.
        • Comerma L.
        • Pybus M.
        • Sintes J.
        • Lligé D.
        • Segura-Garzón D.
        • et al.
        Human secretory igm emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals.
        Immunity. 2017 Jul 18; 47: 118-134.e8
        • Luck H.
        • Khan S.
        • Kim J.H.
        • Copeland J.K.
        • Revelo X.S.
        • Tsai S.
        • et al.
        Gut-associated IgA+ immune cells regulate obesity-related insulin resistance.
        Nat Commun. 2019 Aug 13; 10: 3650
        • Olivares-Villagómez D.
        • Van Kaer L.
        Intestinal intraepithelial lymphocytes: sentinels of the mucosal barrier.
        Trends Immunol. 2018 Apr; 39: 264-275
        • Hadis U.
        • Wahl B.
        • Schulz O.
        • Hardtke-Wolenski M.
        • Schippers A.
        • Wagner N.
        • et al.
        Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria.
        Immunity. 2011 Feb 25; 34: 237-246
        • De Schepper S.
        • Verheijden S.
        • Aguilera-Lizarraga J.
        • Viola M.F.
        • Boesmans W.
        • Stakenborg N.
        • et al.
        Self-maintaining gut macrophages are essential for intestinal homeostasis.
        Cell. 2018 Oct 4; 175: 400-415.e13
        • Vivier E.
        • Artis D.
        • Colonna M.
        • Diefenbach A.
        • Di Santo J.P.
        • Eberl G.
        • et al.
        Innate lymphoid cells: 10 years on.
        Cell. 2018 Aug 23; 174: 1054-1066
        • Exley M.A.
        What makes MAITs wait?.
        Immunity. 2016 Jan 19; 44: 7-9
        • Scheithauer T.P.M.
        • Rampanelli E.
        • Nieuwdorp M.
        • Vallance B.A.
        • Verchere C.B.
        • van Raalte D.H.
        • et al.
        Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes.
        Front Immunol. 2020; 11: 571731
        • Winer D.A.
        • Winer S.
        • Dranse H.J.
        • Lam T.K.T.
        Immunologic impact of the intestine in metabolic disease.
        J Clin Invest. 2017 03; 127: 33-42
        • Kawano Y.
        • Nakae J.
        • Watanabe N.
        • Kikuchi T.
        • Tateya S.
        • Tamori Y.
        • et al.
        Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner.
        Cell Metab. 2016 09; 24: 295-310
        • Monteiro-Sepulveda M.
        • Touch S.
        • Mendes-Sá C.
        • André S.
        • Poitou C.
        • Allatif O.
        • et al.
        Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling.
        Cell Metab. 2015 Jul 7; 22: 113-124
        • Wong V.W.-S.
        • Chan R.S.-M.
        • Wong G.L.-H.
        • Cheung B.H.-K.
        • Chu W.C.-W.
        • Yeung D.K.-W.
        • et al.
        Community-based lifestyle modification programme for non-alcoholic fatty liver disease: a randomized controlled trial.
        J Hepatol. 2013 Sep; 59: 536-542
        • Romero-Gómez M.
        • Zelber-Sagi S.
        • Trenell M.
        Treatment of NAFLD with diet, physical activity and exercise.
        J Hepatol. 2017 Oct 1; 67: 829-846
        • Buchwald H.
        • Buchwald J.N.
        Metabolic (bariatric and nonbariatric) surgery for type 2 diabetes: a personal perspective review.
        Diabetes Care. 2019 Feb; 42: 331-340
        • Souto K.P.
        • Meinhardt N.G.
        • Ramos M.J.
        • Ulbrich-Kulkzynski J.M.
        • Stein A.T.
        • Damin D.C.
        Nonalcoholic fatty liver disease in patients with different baseline glucose status undergoing bariatric surgery: analysis of intraoperative liver biopsies and literature review.
        Surg Obes Relat Dis. 2018 Jan; 14: 66-73
        • Lassailly G.
        • Caiazzo R.
        • Buob D.
        • Pigeyre M.
        • Verkindt H.
        • Labreuche J.
        • et al.
        Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients.
        Gastroenterology. 2015 Aug; 149 ([quiz e15-16]): 379-388
        • Lassailly G.
        • Caiazzo R.
        • Ntandja-Wandji L.-C.
        • Gnemmi V.
        • Baud G.
        • Verkindt H.
        • et al.
        Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis.
        Gastroenterology. 2020 Oct; 159: 1290-1301.e5
        • Wirth K.
        • Sheka A.
        • Kizy S.
        • Irey R.
        • Benner A.
        • Sieger G.
        • et al.
        Bariatric surgery is associated with decreased progression of nonalcoholic fatty liver disease to cirrhosis: a retrospective cohort analysis.
        Ann Surg. 2020 Jul; 272: 32-39
        • Borges-Canha M.
        • Neves J.S.
        • Mendonça F.
        • Silva M.M.
        • Costa C.
        • Cabral P.M.
        • et al.
        The impact of bariatric surgery on hepatic function and predictors of liver steatosis and fibrosis.
        Obes Surg. 2020 Aug; 30: 2935-2941
        • Harrison S.A.
        • Rinella M.E.
        • Abdelmalek M.F.
        • Trotter J.F.
        • Paredes A.H.
        • Arnold H.L.
        • et al.
        NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial.
        Lancet. 2018 24; 391: 1174-1185
        • Harrison S.A.
        • Rossi S.J.
        • Paredes A.H.
        • Trotter J.F.
        • Bashir M.R.
        • Guy C.D.
        • et al.
        NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis.
        Hepatology. 2020 Apr; 71: 1198-1212
        • Harrison S.A.
        • Neff G.
        • Guy C.D.
        • Bashir M.R.
        • Paredes A.H.
        • Frias J.P.
        • et al.
        Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis.
        Gastroenterology. 2021 Jan; 160: 219-231.e1
        • NGM
        Bio Reports Topline Results from 24-Week Phase 2b ALPINE 2/3 Study of Aldafermin in NASH | NGM Biopharmaceuticals, Inc. [Internet].
        (cited. Available from:)
        • Mudaliar S.
        • Henry R.R.
        • Sanyal A.J.
        • Morrow L.
        • Marschall H.-U.
        • Kipnes M.
        • et al.
        Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease.
        Gastroenterology. 2013 Sep; 145: 574-582.e1
        • Younossi Z.M.
        • Ratziu V.
        • Loomba R.
        • Rinella M.
        • Anstee Q.M.
        • Goodman Z.
        • et al.
        Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial.
        Lancet. 2019 Dec 14; 394: 2184-2196
        • Roth J.D.
        • Feigh M.
        • Veidal S.S.
        • Fensholdt L.K.
        • Rigbolt K.T.
        • Hansen H.H.
        • et al.
        INT-767 improves histopathological features in a diet-induced Ob/Ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis.
        World J Gastroenterol. 2018 Jan 14; 24: 195-210
        • Comeglio P.
        • Cellai I.
        • Mello T.
        • Filippi S.
        • Maneschi E.
        • Corcetto F.
        • et al.
        INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function.
        J Endocrinol. 2018 Aug; 238: 107-127
        • Hernandez E.D.
        • Zheng L.
        • Kim Y.
        • Fang B.
        • Liu B.
        • Valdez R.A.
        • et al.
        Tropifexor-mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents.
        Hepatology Communications. 2019; 3: 1085-1097
        • Downes M.
        • Verdecia M.A.
        • Roecker A.J.
        • Hughes R.
        • Hogenesch J.B.
        • Kast-Woelbern H.R.
        • et al.
        A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR.
        Mol Cell. 2003 Apr; 11: 1079-1092
        • Pathak P.
        • Xie C.
        • Nichols R.G.
        • Ferrell J.M.
        • Boehme S.
        • Krausz K.W.
        • et al.
        Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism.
        Hepatology. 2018; 68: 1574-1588
        • Cui J.
        • Philo L.
        • Nguyen P.
        • Hofflich H.
        • Hernandez C.
        • Bettencourt R.
        • et al.
        Sitagliptin vs. placebo for non-alcoholic fatty liver disease: a randomized controlled trial.
        J Hepatol. 2016 Aug; 65: 369-376
        • Yan J.
        • Yao B.
        • Kuang H.
        • Yang X.
        • Huang Q.
        • Hong T.
        • et al.
        Liraglutide, sitagliptin, and insulin glargine added to metformin: the effect on body weight and intrahepatic lipid in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease.
        Hepatology. 2019 Jun; 69: 2414-2426
        • Armstrong M.J.
        • Gaunt P.
        • Aithal G.P.
        • Barton D.
        • Hull D.
        • Parker R.
        • et al.
        Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study.
        Lancet. 2016 Feb 13; 387: 679-690
        • Khoo J.
        • Hsiang J.C.
        • Taneja R.
        • Koo S.-H.
        • Soon G.-H.
        • Kam C.J.
        • et al.
        Randomized trial comparing effects of weight loss by liraglutide with lifestyle modification in non-alcoholic fatty liver disease.
        Liver Int. 2019; 39: 941-949
        • Guo W.
        • Tian W.
        • Lin L.
        • Xu X.
        Liraglutide or insulin glargine treatments improves hepatic fat in obese patients with type 2 diabetes and nonalcoholic fatty liver disease in twenty-six weeks: a randomized placebo-controlled trial.
        Diabetes Res Clin Pract. 2020 Dec; 170: 108487
        • Feng W.
        • Gao C.
        • Bi Y.
        • Wu M.
        • Li P.
        • Shen S.
        • et al.
        Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease.
        J Diabetes. 2017; 9: 800-809
        • Kuchay M.S.
        • Krishan S.
        • Mishra S.K.
        • Choudhary N.S.
        • Singh M.K.
        • Wasir J.S.
        • et al.
        Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: randomised controlled trial (D-LIFT trial).
        Diabetologia. 2020 Nov; 63: 2434-2445
        • Newsome P.N.
        • Buchholtz K.
        • Cusi K.
        • Linder M.
        • Okanoue T.
        • Ratziu V.
        • et al.
        A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis.
        N Engl J Med. 2020 Nov; 13
        • Boland M.L.
        • Laker R.C.
        • Mather K.
        • Nawrocki A.
        • Oldham S.
        • Boland B.B.
        • et al.
        Resolution of NASH and hepatic fibrosis by the GLP-1R and GCGR dual-agonist cotadutide via modulating mitochondrial function and lipogenesis.
        Nat Metab. 2020 May; 2: 413-431
        • Vrieze A.
        • Van Nood E.
        • Holleman F.
        • Salojärvi J.
        • Kootte R.S.
        • Bartelsman J.F.W.M.
        • et al.
        Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.
        Gastroenterology. 2012 Oct; 143: 913-916.e7
        • Craven L.
        • Rahman A.
        • Nair Parvathy S.
        • Beaton M.
        • Silverman J.
        • Qumosani K.
        • et al.
        Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial.
        Am J Gastroenterol. 2020 Jul; 115: 1055-1065
        • van Nood E.
        • Vrieze A.
        • Nieuwdorp M.
        • Fuentes S.
        • Zoetendal E.G.
        • de Vos W.M.
        • et al.
        Duodenal infusion of donor feces for recurrent Clostridium difficile.
        N Engl J Med. 2013 Jan 31; 368: 407-415
        • Bäckhed F.
        • Manchester J.K.
        • Semenkovich C.F.
        • Gordon J.I.
        Mechanisms underlying the resistance to diet-induced obesity in germ-free mice.
        PNAS. 2007 Jan 16; 104: 979-984
        • Mahana D.
        • Trent C.M.
        • Kurtz Z.D.
        • Bokulich N.A.
        • Battaglia T.
        • Chung J.
        • et al.
        Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet.
        Genome Med. 2016 Apr 27; 8: 48
        • Abdel-Razik A.
        • Mousa N.
        • Shabana W.
        • Refaey M.
        • Elzehery R.
        • Elhelaly R.
        • et al.
        Rifaximin in nonalcoholic fatty liver disease: hit multiple targets with a single shot.
        Eur J Gastroenterol Hepatol. 2018 Oct; 30: 1237-1246
        • Chong C.Y.L.
        • Orr D.
        • Plank L.D.
        • Vatanen T.
        • O’Sullivan J.M.
        • Murphy R.
        Randomised double-blind placebo-controlled trial of inulin with metronidazole in non-alcoholic fatty liver disease (NAFLD).
        Nutrients. 2020 Mar; 27: 12(4)
        • Gibson G.R.
        • Hutkins R.
        • Sanders M.E.
        • Prescott S.L.
        • Reimer R.A.
        • Salminen S.J.
        • et al.
        Expert consensus document: the international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.
        Nat Rev Gastroenterol Hepatol. 2017 Aug; 14: 491-502
        • Bao T.
        • He F.
        • Zhang X.
        • Zhu L.
        • Wang Z.
        • Lu H.
        • et al.
        Inulin exerts beneficial effects on non-alcoholic fatty liver disease via modulating gut microbiome and suppressing the lipopolysaccharide-Toll-like receptor 4-Mψ-nuclear factor-κB-nod-like receptor protein 3 pathway via gut-liver Axis in mice.
        Front Pharmacol. 2020; 11: 558525
        • Behrouz V.
        • Aryaeian N.
        • Zahedi M.J.
        • Jazayeri S.
        Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: a randomized clinical trial.
        J Food Sci. 2020 Oct; 85: 3611-3617
        • Hill C.
        • Guarner F.
        • Reid G.
        • Gibson G.R.
        • Merenstein D.J.
        • Pot B.
        • et al.
        Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic.
        Nat Rev Gastroenterol Hepatol. 2014 Aug; 11: 506-514
        • Park S.-S.
        • Lee Y.-J.
        • Song S.
        • Kim B.
        • Kang H.
        • Oh S.
        • et al.
        Lactobacillus acidophilus NS1 attenuates diet-induced obesity and fatty liver.
        J Endocrinol. 2018 May; 237: 87-100
        • Ahn S.B.
        • Jun D.W.
        • Kang B.-K.
        • Lim J.H.
        • Lim S.
        • Chung M.-J.
        Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease.
        Sci Rep. 2019 Apr 5; 9: 5688
        • Alisi A.
        • Bedogni G.
        • Baviera G.
        • Giorgio V.
        • Porro E.
        • Paris C.
        • et al.
        Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis.
        Aliment Pharmacol Ther. 2014 Jun; 39: 1276-1285
        • Lensu S.
        • Pariyani R.
        • Mäkinen E.
        • Yang B.
        • Saleem W.
        • Munukka E.
        • et al.
        Prebiotic xylo-oligosaccharides ameliorate high-fat-diet-induced hepatic steatosis in rats.
        Nutrients. 2020 Oct; 22: 12(11)
        • Asgharian A.
        • Askari G.
        • Esmailzade A.
        • Feizi A.
        • Mohammadi V.
        The effect of symbiotic supplementation on liver enzymes, c-reactive protein and ultrasound findings in patients with non-alcoholic fatty liver disease: a clinical trial.
        Int J Prev Med. 2016 Mar 10; 7: 59
        • Eslamparast T.
        • Poustchi H.
        • Zamani F.
        • Sharafkhah M.
        • Malekzadeh R.
        • Hekmatdoost A.
        Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study.
        Am J Clin Nutr. 2014 Mar; 99: 535-542
        • Scorletti E.
        • Afolabi P.R.
        • Miles E.A.
        • Smith D.E.
        • Almehmadi A.
        • Alshathry A.
        • et al.
        Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease.
        Gastroenterology. 2020 May; 158: 1597-1610.e7
        • Neuschwander-Tetri B.A.
        • Loomba R.
        • Sanyal A.J.
        • Lavine J.E.
        • Van Natta M.L.
        • Abdelmalek M.F.
        • et al.
        Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial.
        Lancet. 2015 Mar 14; 385: 956-965