Advertisement
Article from the Diabetes: State-of-the-art 100 years after the discovery of insulin Special Issue, Edited by Stergios Polyzos and Christos Mantzoros| Volume 123, 154867, October 2021

Download started.

Ok

Management of diabetic neuropathy

  • Simona Cernea
    Correspondence
    Corresponding author at: “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Dept. M3/Internal Medicine I, 38 Gheorghe Marinescu str, 540139 Târgu Mureș, Romania.
    Affiliations
    Department M3/Internal Medicine I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania

    Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
    Search for articles by this author
  • Itamar Raz
    Affiliations
    Diabetes Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
    Search for articles by this author

      Highlights

      • Management of DPN starts with risk factors control and lifestyle intervention.
      • There are no universally accepted pathogenetic-based drugs for diabetic neuropathy.
      • Pain management may start with pregabalin/gabapentin/duloxetine.
      • If not effective, they may be switched, or 2nd-line agents/combination should be used.

      Abstract

      Diabetic neuropathy is a neurodegenerative disorder that may alter both the somatic and autonomic peripheral nervous systems in the context of diabetes mellitus (DM). It is a prevalent and burdensome chronic complication of DM, that requires timely management. Optimized glycemic control (mainly for type 1 DM), multifactorial intervention (mainly for type 2 DM), with lifestyle intervention/physical exercise, and weight loss represent the basis of management for diabetic distal symmetrical polyneuropathy, and should be implemented early in the disease course. Despite better understanding of the pathogenetic mechanisms of diabetic peripheral neuropathy, there is still a stringent need for more pathogenetic-based agents that would significantly modify the natural history of the disease. The paper reviews the available drugs and current recommendations for the management of distal symmetrical polyneuropathy, including pain management, and for diabetic autonomic neuropathy. Evaluation of drug combinations that would perhaps be more efficient in slowing the progression of the disease or even reversing it, and that would provide a better pain management is still needed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Feldman E.L.
        • Callaghan B.C.
        • Pop-Busui R.
        • Zochodne D.W.
        • Wright D.E.
        • Bennett D.L.
        • et al.
        Diabetic neuropathy.
        Nat Rev Dis Primers. 2019; 5: 41
        • Bönhof G.J.
        • Herder C.
        • Strom A.
        • Papanas N.
        • Roden M.
        • Ziegler D.
        Emerging biomarkers, tools, and treatments for diabetic polyneuropathy.
        Endocr. Rev. 2019; 40: 153-192
        • Pop-Busui R.
        • Boulton A.J.
        • Feldman E.L.
        • Bril V.
        • Freeman R.
        • Malik R.A.
        • et al.
        Diabetic neuropathy: a position statement by the American Diabetes Association.
        Diabetes Care. 2017; 40: 136-154
        • Hicks C.W.
        • Selvin E.
        Epidemiology of peripheral neuropathy and lower extremity disease in diabetes.
        Curr Diab Rep. 2019; 19: 86
        • Dyck P.J.
        • Kratz K.M.
        • Karnes J.L.
        • Litchy W.J.
        • Klein R.
        • Pach J.M.
        • et al.
        The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester diabetic neuropathy study.
        Neurology. 1993; 43: 817-824
        • Tesfaye S.
        • Stevens L.K.
        • Stephenson J.M.
        • Fuller J.H.
        • Plater M.
        • Ionescu-Tirgoviste C.
        • et al.
        Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM complications study.
        Diabetologia. 1996; 39: 1377-1384
        • Jaiswal M.
        • Lauer A.
        • Martin C.L.
        • Bell R.A.
        • Divers J.
        • Dabelea D.
        • et al.
        Peripheral neuropathy in adolescents and young adults with type 1 and type 2 diabetes from the SEARCH for diabetes in youth follow-up cohort: a pilot study.
        Diabetes Care. 2013; 36: 3903-3908
        • Martin C.L.
        • Albers J.W.
        • Pop-Busui R.
        • DCCT/EDIC Research Group
        Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study.
        Diabetes Care. 2014; 37: 31-38
        • Franklin G.M.
        • Kahn L.B.
        • Baxter J.
        • Marshall J.A.
        • Hamman R.F.
        Sensory neuropathy in non-insulin-dependent diabetes mellitus. The San Luis Valley diabetes study.
        Am. J. Epidemiol. 1990; 131: 633-643
        • Pop-Busui R.
        • Lu J.
        • Lopes N.
        • Jones T.L.
        • BARI 2D Investigators
        Prevalence of diabetic peripheral neuropathy and relation to glycemic control therapies at baseline in the BARI 2D cohort.
        J. Peripher. Nerv. Syst. 2009; 14: 1-13
        • Partanen J.
        • Niskanen L.
        • Lehtinen J.
        • Mervaala E.
        • Siitonen O.
        • Uusitupa M.
        Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus.
        N. Engl. J. Med. 1995; 333: 89-94
        • Lu Y.
        • Xing P.
        • Cai X.
        • Luo D.
        • Li R.
        • Lloyd C.
        • et al.
        Prevalence and risk factors for diabetic peripheral neuropathy in type 2 diabetic patients from 14 countries: estimates of the INTERPRET-DD study.
        Front. Public Health. 2020; 8: 534372
        • Duckworth W.
        • Abraira C.
        • Moritz T.
        • Reda D.
        • Emanuele N.
        • Reaven P.D.
        • et al.
        Glucose control and vascular complications in veterans with type 2 diabetes.
        N. Engl. J. Med. 2009; 360: 129-139
        • Callaghan B.C.
        • Xia R.
        • Banerjee M.
        • de Rekeneire N.
        • Harris T.B.
        • Newman A.B.
        • et al.
        Metabolic syndrome components are associated with symptomatic polyneuropathy independent of glycemic status.
        Diabetes Care. 2016; 39: 801-807
        • Tesfaye S.
        • Chaturvedi N.
        • Eaton S.E.
        • Ward J.D.
        • Manes C.
        • Ionescu-Tirgoviste C.
        • et al.
        Vascular risk factors and diabetic neuropathy.
        N. Engl. J. Med. 2005; 352: 341-350
        • Maser R.E.
        • Steenkiste A.R.
        • Dorman J.S.
        • Nielsen V.K.
        • Bass E.B.
        • Manjoo Q.
        • et al.
        Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh epidemiology of diabetes complications study.
        Diabetes. 1989; 38: 1456-1461
        • Ziegler D.
        • Papanas N.
        • Vinik A.I.
        • Shaw J.E.
        Epidemiology of polyneuropathy in diabetes and prediabetes.
        Handb. Clin. Neurol. 2014; 126: 3-22
        • Kobayashi M.
        • Zochodne D.W.
        Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications.
        J Diabetes Investig. 2018; 9: 1239-1254
        • Zochodne D.W.
        • Ramji N.
        • Toth C.
        Neuronal targeting in diabetes mellitus: a story of sensory neurons and motor neurons.
        Neuroscientist. 2008; 14: 311-318
        • Feldman E.L.
        • Nave K.A.
        • Jensen T.S.
        • Bennett D.L.H.
        New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain.
        Neuron. 2017; 93: 1296-1313
        • Muzurović E.
        • Stanković Z.
        • Kovačević Z.
        • Škrijelj B.Š.
        • Mikhailidis D.P.
        Inflammatory markers associated with diabetes mellitus - old and new players.
        Curr. Pharm. Des. 2020 Nov 24; ([Epub ahead of print])https://doi.org/10.2174/1381612826666201125103047
        • SL M.
        • P O.
        Inflammatory biomarkers as a part of diagnosis in diabetic peripheral neuropathy.
        J Diabetes Metab Disord. 2021 Jan 15; 20: 869-882
        • Singh V.P.
        • Bali A.
        • Singh N.
        • Jaggi A.S.
        Advanced glycation end products and diabetic complications.
        Korean J Physiol Pharmacol. 2014; 18: 1-14
        • Sloan G.
        • Selvarajah D.
        • Tesfaye S.
        Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy.
        Nat. Rev. Endocrinol. 2021; 17: 400-420
        • Wada R.
        • Yagihashi S.
        Role of advanced glycation end products and their receptors in development of diabetic neuropathy.
        Ann. N. Y. Acad. Sci. 2005; 1043: 598-604
        • Vincent A.M.
        • Callaghan B.C.
        • Smith A.L.
        • Feldman E.L.
        Diabetic neuropathy: cellular mechanisms as therapeutic targets.
        Nat. Rev. Neurol. 2011; 7: 573-583
        • Pratchayasakul W.
        • Kerdphoo S.
        • Petsophonsakul P.
        • Pongchaidecha A.
        • Chattipakorn N.
        • Chattipakorn S.C.
        Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone.
        Life Sci. 2011; 88: 619-627
        • Viader A.
        • Sasaki Y.
        • Kim S.
        • Strickland A.
        • Workman C.S.
        • Yang K.
        • et al.
        Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy.
        Neuron. 2013; 77: 886-898
        • Vincent A.M.
        • Hayes J.M.
        • McLean L.L.
        • Vivekanandan-Giri A.
        • Pennathur S.
        • Feldman E.L.
        Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1.
        Diabetes. 2009; 58: 2376-2385
        • Jang E.R.
        • Lee C.S.
        7-ketocholesterol induces apoptosis in differentiated PC12 cells via reactive oxygen species-dependent activation of NF-κB and Akt pathways.
        Neurochem. Int. 2011; 58: 52-59
        • Richner M.
        • Ferreira N.
        • Dudele A.
        • Jensen T.S.
        • Vaegter C.B.
        • Gonçalves N.P.
        Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy.
        Front. Neurosci. 2019; 12: 1038
        • Kobayashi M.
        • Zochodne D.W.
        Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications.
        J Diabetes Investig. 2018 Nov; 9: 1239-1254
        • Thrainsdottir S.
        • Malik R.A.
        • Dahlin L.B.
        • Wiksell P.
        • Eriksson K.F.
        • Rosén I.
        • et al.
        Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man.
        Diabetes. 2003; 52: 2615-2622
        • Jimenez-Andrade J.M.
        • Herrera M.B.
        • Ghilardi J.R.
        • Vardanyan M.
        • Melemedjian O.K.
        • Mantyh P.W.
        Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: implications for chemical-induced peripheral sensory neuropathies.
        Mol. Pain. 2008; 4: 10
        • Barrell K.
        • Smith A.G.
        Peripheral neuropathy.
        Med Clin North Am. 2019 Mar; 103: 383-397
        • Javed S.
        • Alam U.
        • Malik R.A.
        Burning through the pain: treatments for diabetic neuropathy.
        Diabetes Obes. Metab. 2015; 17: 1115-1125
        • Ziegler D.
        • Papanas N.
        • Schnell O.
        • Nguyen B.D.T.
        • Nguyen K.T.
        • Kulkantrakorn K.
        • et al.
        Current concepts in the management of diabetic polyneuropathy.
        J Diabetes Investig. 2021; 12: 464-475
        • Javed S.
        • Hayat T.
        • Menon L.
        • Alam U.
        • Malik R.A.
        Diabetic peripheral neuropathy in people with type 2 diabetes: too little too late.
        Diabet. Med. 2020; 37: 573-579
        • Tsapas A.
        • Liakos A.
        • Paschos P.
        • Karagiannis T.
        • Bekiari E.
        • Tentolouris N.
        • et al.
        A simple plaster for screening for diabetic neuropathy: a diagnostic test accuracy systematic review and meta-analysis.
        Metabolism. 2014; 63: 584-592
        • Javed S.
        • Alam U.
        • Malik R.A.
        Treating diabetic neuropathy: present strategies and emerging solutions.
        Rev. Diabet. Stud. 2015; 12: 63-83
        • Callaghan B.C.
        • Little A.A.
        • Feldman E.L.
        • Hughes R.A.
        Enhanced glucose control for preventing and treating diabetic neuropathy.
        Cochrane Database Syst. Rev. 2012; 6CD007543
        • Diabetes Control and Complications Trial Research Group
        • Nathan D.M.
        • Genuth S.
        • Lachin J.
        • Cleary P.
        • Crofford O.
        • et al.
        The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.
        N. Engl. J. Med. 1993; 329: 977-986
        • Martin C.L.
        • Albers J.W.
        • Pop-Busui R.
        • DCCT/EDIC Research Group
        Neuropathy and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study.
        Diabetes Care. 2014; 37: 31-38
        • Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group
        • Lachin J.M.
        • White N.H.
        • Hainsworth D.P.
        • et al.
        Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC.
        Diabetes. 2015; 64: 631-642
        • Ziegler D.
        • Behler M.
        • Schroers-Teuber M.
        • Roden M.
        Near-normoglycaemia and development of neuropathy: a 24-year prospective study from diagnosis of type 1 diabetes.
        BMJ Open. 2015; 5e006559
        • Navarro X.
        • Sutherland D.E.
        • Kennedy W.R.
        Long-term effects of pancreatic transplantation on diabetic neuropathy.
        Ann. Neurol. 1997; 42: 727-736
        • Azmi S.
        • Jeziorska M.
        • Ferdousi M.
        • Petropoulos I.N.
        • Ponirakis G.
        • Marshall A.
        • et al.
        Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation.
        Diabetologia. 2019; 62: 1478-1487
        • Del Carro U.
        • Fiorina P.
        • Amadio S.
        • De Toni Franceschini L.
        • Petrelli A.
        • Menini S.
        • et al.
        Evaluation of polyneuropathy markers in type 1 diabetic kidney transplant patients and effects of islet transplantation: neurophysiological and skin biopsy longitudinal analysis.
        Diabetes Care. 2007; 30: 3063-3069
        • Boucek P.
        • Havrdova T.
        • Voska L.
        • Lodererova A.
        • He L.
        • Saudek F.
        • et al.
        Epidermal innervation in type 1 diabetic patients: a 2.5-year prospective study after simultaneous pancreas/kidney transplantation.
        Diabetes Care. 2008; 31: 1611-1612
        • Ekberg K.
        • Johansson B.L.
        Effect of C-peptide on diabetic neuropathy in patients with type 1 diabetes.
        Exp. Diabetes Res. 2008; 2008: 457912
        • Ekberg K.
        • Brismar T.
        • Johansson B.L.
        • Jonsson B.
        • Lindström P.
        • Wahren J.
        Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes.
        Diabetes. 2003; 52: 536-541
        • Boussageon R.
        • Bejan-Angoulvant T.
        • Saadatian-Elahi M.
        • Lafont S.
        • Bergeonneau C.
        • Kassaï B.
        • et al.
        Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials.
        BMJ. 2011; 343: d4169
        • Ohkubo Y.
        • Kishikawa H.
        • Araki E.
        • Miyata T.
        • Isami S.
        • Motoyoshi S.
        • et al.
        Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study.
        Diabetes Res. Clin. Pract. 1995; 28: 103-117
        • Pop-Busui R.
        • Lu J.
        • Brooks M.M.
        • Albert S.
        • Althouse A.D.
        • Escobedo J.
        • et al.
        Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort.
        Diabetes Care. 2013; 36: 3208-3215
        • Ishibashi F.
        • Taniguchi M.
        • Kosaka A.
        • Uetake H.
        • Tavakoli M.
        Improvement in neuropathy outcomes with normalizing HbA1c in patients with type 2 diabetes.
        Diabetes Care. 2019; 42: 110-118
        • Ponirakis G.
        • Abdul-Ghani M.A.
        • Jayyousi A.
        • Zirie M.A.
        • Qazi M.
        • Almuhannadi H.
        • et al.
        Painful diabetic neuropathy is associated with increased nerve regeneration in patients with type 2 diabetes undergoing intensive glycemic control.
        J Diabetes Investig. 2021 Mar 13; https://doi.org/10.1111/jdi.13544
        • Várkonyi T.
        • Körei A.
        • Putz Z.
        • Martos T.
        • Keresztes K.
        • Lengyel C.
        • et al.
        Advances in the management of diabetic neuropathy.
        Minerva Med. 2017; 108: 419-437
        • Stino A.M.
        • Rumora A.E.
        • Kim B.
        • Feldman E.L.
        Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy.
        J. Peripher. Nerv. Syst. 2020; 25: 76-84
        • Gaede P.
        • Vedel P.
        • Larsen N.
        • Jensen G.V.
        • Parving H.H.
        • Pedersen O.
        Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.
        N. Engl. J. Med. 2003; 348: 383-393
        • Gæde P.
        • Oellgaard J.
        • Carstensen B.
        • Rossing P.
        • Lund-Andersen H.
        • Parving H.H.
        • et al.
        Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the steno-2 randomised trial.
        Diabetologia. 2016; 59: 2298-2307
        • Sandbæk A.
        • Griffin S.J.
        • Sharp S.J.
        • Simmons R.K.
        • Borch-Johnsen K.
        • Rutten G.E.
        • et al.
        Effect of early multifactorial therapy compared with routine care on microvascular outcomes at 5 years in people with screen-detected diabetes: a randomized controlled trial: the ADDITION-Europe study.
        Diabetes Care. 2014; 37: 2015-2023
        • Davis T.M.
        • Yeap B.B.
        • Davis W.A.
        • Bruce D.G.
        Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle diabetes study.
        Diabetologia. 2008; 51: 562-566
        • Zangiabadi N.
        • Shafiee K.
        • Alavi K.H.
        • Assadi A.R.
        • Damavandi M.
        Atorvastatin treatment improves diabetic polyneuropathy electrophysiological changes in non-insulin dependent diabetic patients: a double blind, randomized clinical trial.
        Minerva Endocrinol. 2012; 37: 195-200
        • Hernández-Ojeda J.
        • Román-Pintos L.M.
        • Rodríguez-Carrízalez A.D.
        • Troyo-Sanromán R.
        • Cardona-Muñoz E.G.
        • Alatorre-Carranza Mdel P.
        • et al.
        Effect of rosuvastatin on diabetic polyneuropathy: a randomized, double-blind, placebo-controlled phase IIa study.
        Diabetes Metab Syndr Obes. 2014; 7: 401-407
        • Villegas-Rivera G.
        • Román-Pintos L.M.
        • Cardona-Muñoz E.G.
        • Arias-Carvajal O.
        • Rodríguez-Carrizalez A.D.
        • Troyo-Sanromán R.
        • et al.
        Effects of Ezetimibe/Simvastatin and Rosuvastatin on oxidative stress in diabetic neuropathy: a randomized, double-blind.
        Placebo-Controlled Clinical Trial Oxid Med Cell Longev. 2015; 2015: 756294
        • Malik R.A.
        • Williamson S.
        • Abbott C.
        • Carrington A.L.
        • Iqbal J.
        • Schady W.
        • et al.
        Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial.
        Lancet. 1998; 352: 1978-1981
        • Ruggenenti P.
        • Lauria G.
        • Iliev I.P.
        • Fassi A.
        • Ilieva A.P.
        • Rota S.
        • et al.
        Effects of manidipine and delapril in hypertensive patients with type 2 diabetes mellitus: the delapril and manidipine for nephroprotection in diabetes (DEMAND) randomized clinical trial.
        Hypertension. 2011; 58: 776-783
        • Reja A.
        • Tesfaye S.
        • Harris N.D.
        • Ward J.D.
        Is ACE inhibition with lisinopril helpful in diabetic neuropathy?.
        Diabet. Med. 1995; 12: 307-309
        • Didangelos T.
        • Tziomalos K.
        • Margaritidis C.
        • Kontoninas Z.
        • Stergiou I.
        • Tsotoulidis S.
        • et al.
        Efficacy of administration of an angiotensin converting enzyme inhibitor for two years on autonomic and peripheral neuropathy in patients with diabetes mellitus.
        J. Diabetes Res. 2017; 2017: 6719239
        • Azmi S.
        • Alam U.
        • Burgess J.
        • Malik R.A.
        State-of-the-art pharmacotherapy for diabetic neuropathy.
        Expert. Opin. Pharmacother. 2021; 22: 55-68
        • Look AHEAD Research Group
        Effects of a long-term lifestyle modification programme on peripheral neuropathy in overweight or obese adults with type 2 diabetes: the Look AHEAD study.
        Diabetologia. 2017; 60: 980-988
        • Aghili R.
        • Malek M.
        • Tanha K.
        • Mottaghi A.
        The effect of bariatric surgery on peripheral polyneuropathy: a systematic review and meta-analysis.
        Obes. Surg. 2019; 29: 3010-3020
        • Kluding P.M.
        • Pasnoor M.
        • Singh R.
        • Jernigan S.
        • Farmer K.
        • Rucker J.
        • et al.
        The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy.
        J. Diabetes Complicat. 2012; 26: 424-429
        • Singleton J.R.
        • Marcus R.L.
        • Lessard M.K.
        • Jackson J.E.
        • Smith A.G.
        Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients.
        Ann. Neurol. 2015; 77: 146-153
        • Smith A.G.
        • Russell J.
        • Feldman E.L.
        • Goldstein J.
        • Peltier A.
        • Smith S.
        • et al.
        Lifestyle intervention for pre-diabetic neuropathy.
        Diabetes Care. 2006; 29: 1294-1299
        • Balducci S.
        • Iacobellis G.
        • Parisi L.
        • Di Biase N.
        • Calandriello E.
        • Leonetti F.
        • et al.
        Exercise training can modify the natural history of diabetic peripheral neuropathy.
        J. Diabetes Complicat. 2006; 20: 216-223
        • Ziegler D.
        • Hanefeld M.
        • Ruhnau K.J.
        • Meissner H.P.
        • Lobisch M.
        • Schütte K.
        • et al.
        Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN study).
        Diabetologia. 1995; 38: 1425-1433
        • Reljanovic M.
        • Reichel G.
        • Rett K.
        • Lobisch M.
        • Schuette K.
        • Möller W.
        • et al.
        Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha lipoic acid in diabetic neuropathy.
        Free Radic. Res. 1999; 31: 171-179
        • Ziegler D.
        • Hanefeld M.
        • Ruhnau K.J.
        • Hasche H.
        • Lobisch M.
        • Schütte K.
        • et al.
        Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III study). ALADIN III study group. Alpha-lipoic acid in diabetic neuropathy.
        Diabetes Care. 1999; 22: 1296-1301
        • Ametov A.S.
        • Barinov A.
        • Dyck P.J.
        • Hermann R.
        • Kozlova N.
        • Litchy W.J.
        • et al.
        The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial.
        Diabetes Care. 2003; 26 (Erratum in: Diabetes Care. 2003; 26(7): 2227): 770-776
        • Ziegler D.
        • Ametov A.
        • Barinov A.
        • Dyck P.J.
        • Gurieva I.
        • Low P.A.
        • et al.
        Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial.
        Diabetes Care. 2006; 29: 2365-2370
        • Han T.
        • Bai J.
        • Liu W.
        • Hu Y.
        A systematic review and meta-analysis of α-lipoic acid in the treatment of diabetic peripheral neuropathy.
        Eur. J. Endocrinol. 2012; 167: 465-471
        • Mijnhout G.S.
        • Kollen B.J.
        • Alkhalaf A.
        • Kleefstra N.
        • Bilo H.J.
        Alpha lipoic acid for symptomatic peripheral neuropathy in patients with diabetes: a meta-analysis of randomized controlled trials.
        Int. J. Endocrinol. 2012; 2012: 456279
        • Snedecor S.J.
        • Sudharshan L.
        • Cappelleri J.C.
        • Sadosky A.
        • Mehta S.
        • Botteman M.
        Systematic review and meta-analysis of pharmacological therapies for painful diabetic peripheral neuropathy.
        Pain Pract. 2014; 14: 167-184
        • Amato Nesbit S.
        • Sharma R.
        • Waldfogel J.M.
        • Zhang A.
        • Bennett W.L.
        • Yeh H.C.
        • et al.
        Non-pharmacologic treatments for symptoms of diabetic peripheral neuropathy: a systematic review.
        Curr. Med. Res. Opin. 2019; 35: 15-25
        • Ziegler D.
        • Nowak H.
        • Kempler P.
        • Vargha P.
        • Low P.A.
        Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis.
        Diabet. Med. 2004; 21: 114-121
        • Ziegler D.
        • Low P.A.
        • Litchy W.J.
        • Boulton A.J.
        • Vinik A.I.
        • Freeman R.
        • et al.
        Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial.
        Diabetes Care. 2011; 34: 2054-2060
        • Nádró B.
        • Lőrincz H.
        • Molnár Á.
        • Szentpéteri A.
        • Zöld E.
        • Seres I.
        • et al.
        Effects of alpha-lipoic acid treatment on serum progranulin levels and inflammatory markers in diabetic neuropathy.
        J Int Med Res. 2021; 49https://doi.org/10.1177/3000605211012213
        • Berrone E.
        • Beltramo E.
        • Solimine C.
        • Ape A.U.
        • Porta M.
        Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose.
        J. Biol. Chem. 2006; 281: 9307-9313
        • Hammes H.P.
        • Du X.
        • Edelstein D.
        • Taguchi T.
        • Matsumura T.
        • Ju Q.
        • et al.
        Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy.
        Nat. Med. 2003; 9: 294-299
        • Schmid U.
        • Stopper H.
        • Heidland A.
        • Schupp N.
        Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro.
        Diabetes Metab. Res. Rev. 2008; 24: 371-377
        • Gorlova A.
        • Pavlov D.
        • Anthony D.C.
        • Ponomarev E.D.
        • Sambon M.
        • Proshin A.
        • et al.
        Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice.
        Neuropharmacology. 2019; 156: 107543
        • Haupt E.
        • Ledermann H.
        • Köpcke W.
        Benfotiamine in the treatment of diabetic polyneuropathy--a three-week randomized, controlled pilot study (BEDIP study).
        Int. J. Clin. Pharmacol. Ther. 2005; 43 (Erratum in: Int J Clin Pharmacol Ther. 2005; 43(6): 304): 71-78
        • Stracke H.
        • Lindemann A.
        • Federlin K.
        A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy.
        Exp. Clin. Endocrinol. Diabetes. 1996; 104: 311-316
        • Winkler G.
        • Pál B.
        • Nagybéganyi E.
        • Ory I.
        • Porochnavec M.
        • Kempler P.
        Effectiveness of different benfotiamine dosage regimens in the treatment of painful diabetic neuropathy.
        Arzneimittelforschung. 1999; 49: 220-224
        • Stracke H.
        • Gaus W.
        • Achenbach U.
        • Federlin K.
        • Bretzel R.G.
        Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study.
        Exp. Clin. Endocrinol. Diabetes. 2008; 116: 600-605
        • Buchmayer F.
        • Pleiner J.
        • Elmlinger M.W.
        • Lauer G.
        • Nell G.
        • Sitte H.H.
        Actovegin®: a biological drug for more than 5 decades.
        Wien. Med. Wochenschr. 2011; 161 (Erratum in: Wien Med Wochenschr. 2011; 161(9–10): 280): 80-88
        • Dieckmann A.
        • Kriebel M.
        • Andriambeloson E.
        • Ziegler D.
        • Elmlinger M.
        Treatment with Actovegin® improves sensory nerve function and pathology in streptozotocin-diabetic rats via mechanisms involving inhibition of PARP activation.
        Exp. Clin. Endocrinol. Diabetes. 2012; 120: 132-138
        • Ziegler D.
        • Movsesyan L.
        • Mankovsky B.
        • Gurieva I.
        • Abylaiuly Z.
        • Strokov I.
        Treatment of symptomatic polyneuropathy with actovegin in type 2 diabetic patients.
        Diabetes Care. 2009; 32: 1479-1484
        • Ziegler D.
        • Edmundson S.
        • Gurieva I.
        • Mankovsky B.
        • Papanas N.
        • Strokov I.
        Predictors of response to treatment with actovegin for 6 months in patients with type 2 diabetes and symptomatic polyneuropathy.
        J. Diabetes Complicat. 2017; 31: 1181-1187
        • Brownlee M.
        The pathobiology of diabetic complications: a unifying mechanism.
        Diabetes. 2005; 54: 1615-1625
        • Tomlinson D.R.
        • Moriarty R.J.
        • Mayer J.H.
        Prevention and reversal of defective axonal transport and motor nerve conduction velocity in rats with experimental diabetes by treatment with the aldose reductase inhibitor Sorbinil.
        Diabetes. 1984; 33: 470-476
        • Greene D.A.
        • Arezzo J.C.
        • Brown M.B.
        Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy.
        Zenarestat Study Group Neurology. 1999; 53: 580-591
        • Hotta N.
        • Akanuma Y.
        • Kawamori R.
        • Matsuoka K.
        • Oka Y.
        • Shichiri M.
        • et al.
        Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial.
        Diabetes Care. 2006; 29: 1538-1544
        • Chalk C.
        • Benstead T.J.
        • Moore F.
        Aldose reductase inhibitors for the treatment of diabetic polyneuropathy.
        Cochrane Database Syst. Rev. 2007; 4CD004572
        • Alam U.
        • Sloan G.
        • Tesfaye S.
        Treating pain in diabetic neuropathy: current and developmental drugs.
        Drugs. 2020; 80: 363-384
        • Bansal D.
        • Badhan Y.
        • Gudala K.
        • Schifano F.
        Ruboxistaurin for the treatment of diabetic peripheral neuropathy: a systematic review of randomized clinical trials.
        Diabetes Metab. J. 2013; 37: 375-384
        • Sergi G.
        • Pizzato S.
        • Piovesan F.
        • Trevisan C.
        • Veronese N.
        • Manzato E.
        Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders.
        Aging Clin. Exp. Res. 2018; 30: 133-138
        • Sima A.A.
        • Calvani M.
        • Mehra M.
        • Amato A.
        • Acetyl-L-Carnitine Study Group
        Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials.
        Diabetes Care. 2005; 28: 89-94
        • Didangelos T.
        • Karlafti E.
        • Kotzakioulafi E.
        • Margariti E.
        • Giannoulaki P.
        • Batanis G.
        • et al.
        Vitamin B12 supplementation in diabetic neuropathy: a 1-year, randomized, double-blind.
        Placebo-Controlled Trial Nutrients. 2021; 13: 395
        • Lewis E.J.H.
        • Perkins B.A.
        • Lovblom L.E.
        • Bazinet R.P.
        • Wolever T.M.S.
        • Bril V.
        Effect of omega-3 supplementation on neuropathy in type 1 diabetes: a 12-month pilot trial.
        Neurology. 2017; 88: 2294-2301
        • Didangelos T.
        • Karlafti E.
        • Kotzakioulafi E.
        • Kontoninas Z.
        • Margaritidis C.
        • Giannoulaki P.
        • et al.
        Efficacy and safety of the combination of superoxide dismutase, alpha lipoic acid, vitamin B12, and carnitine for 12 months in patients with diabetic neuropathy.
        Nutrients. 2020; 12: 3254
        • Jiang D.Q.
        • Li M.X.
        • Wang Y.
        • Wang Y.
        Effects of prostaglandin E1 plus methylcobalamin alone and in combination with lipoic acid on nerve conduction velocity in patients with diabetic peripheral neuropathy: a meta-analysis.
        Neurosci. Lett. 2015; 594: 23-29
        • Jiang D.Q.
        • Xu L.C.
        • Jiang L.L.
        • Li M.X.
        • Wang Y.
        Fasudil combined with methylcobalamin or lipoic acid can improve the nerve conduction velocity in patients with diabetic peripheral neuropathy: a meta-analysis.
        Medicine (Baltimore). 2018; 97e11390
        • de Anda-Jáuregui G.
        • Guo K.
        • McGregor B.A.
        • Feldman E.L.
        • Hur J.
        Pathway crosstalk perturbation network modeling for identification of connectivity changes induced by diabetic neuropathy and pioglitazone.
        BMC Syst. Biol. 2019; 13: 1
        • NICE Clinical Guidelines
        Neuropathic pain in adults: pharmacological management in non-specialist settings. No. 173, London: National Institute for Health and Care Excellence (UK).
        2020 Sep 22
        • Dworkin R.H.
        • O’Connor A.B.
        • Kent J.
        • Mackey S.C.
        • Raja S.N.
        • Stacey B.R.
        • et al.
        Interventional management of neuropathic pain: NeuPSIG recommendations.
        Pain. 2013; 154: 2249-2261
        • Bril V.
        • England J.
        • Franklin G.M.
        • Backonja M.
        • Cohen J.
        • Del Toro D.
        • et al.
        Evidence-based guideline: Treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation.
        Neurology. 2011; 76: 1758-1865
        • Fink K.
        • Dooley D.J.
        • Meder W.P.
        • Suman-Chauhan N.
        • Duffy S.
        • Clusmann H.
        • et al.
        Inhibition of neuronal Ca(2+) influx by gabapentin and pregabalin in the human neocortex.
        Neuropharmacology. 2002; 42: 229-236
        • Verma V.
        • Singh N.
        • Singh Jaggi A.
        Pregabalin in neuropathic pain: evidences and possible mechanisms.
        Curr. Neuropharmacol. 2014; 12: 44-56
        • Mellegers M.A.
        • Furlan A.D.
        • Mailis A.
        Gabapentin for neuropathic pain: systematic review of controlled and uncontrolled literature.
        Clin. J. Pain. 2001; 17: 284-295
        • Backonja M.
        • Glanzman R.L.
        Gabapentin dosing for neuropathic pain: evidence from randomized, placebo-controlled clinical trials.
        Clin. Ther. 2003; 25: 81-104
        • Wiffen P.J.
        • Derry S.
        • Bell R.F.
        • Rice A.S.
        • Tölle T.R.
        • Phillips T.
        • et al.
        Gabapentin for chronic neuropathic pain in adults.
        Cochrane Database Syst. Rev. 2017; 6CD007938
        • Rudroju N.
        • Bansal D.
        • Talakokkula S.T.
        • Gudala K.
        • Hota D.
        • Bhansali A.
        • et al.
        Comparative efficacy and safety of six antidepressants and anticonvulsants in painful diabetic neuropathy: a network meta-analysis.
        Pain Physician. 2013; 16: E705-E714
        • Derry S.
        • Bell R.F.
        • Straube S.
        • Wiffen P.J.
        • Aldington D.
        • Moore R.A.
        Pregabalin for neuropathic pain in adults.
        Cochrane Database Syst. Rev. 2019; 1CD007076
        • Baba M.
        • Matsui N.
        • Kuroha M.
        • Wasaki Y.
        • Ohwada S.
        Mirogabalin for the treatment of diabetic peripheral neuropathic pain: a randomized, double-blind, placebo-controlled phase III study in Asian patients.
        J Diabetes Investig. 2019; 10: 1299-1306
        • Zhou M.
        • Chen N.
        • He L.
        • Yang M.
        • Zhu C.
        • Wu F.
        Oxcarbazepine for neuropathic pain.
        Cochrane Database Syst. Rev. 2017; 12CD007963
        • Marks D.M.
        • Shah M.J.
        • Patkar A.A.
        • Masand P.S.
        • Park G.Y.
        • Pae C.U.
        Serotonin-norepinephrine reuptake inhibitors for pain control: premise and promise.
        Curr. Neuropharmacol. 2009; 7: 331-336
        • Griebeler M.L.
        • Morey-Vargas O.L.
        • Brito J.P.
        • Tsapas A.
        • Wang Z.
        • Carranza Leon B.G.
        • et al.
        Pharmacologic interventions for painful diabetic neuropathy: an umbrella systematic review and comparative effectiveness network meta-analysis.
        Ann. Intern. Med. 2014; 161: 639-649
        • Lunn M.P.
        • Hughes R.A.
        • Wiffen P.J.
        Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia.
        Cochrane Database Syst. Rev. 2014; 1CD007115
        • Quilici S.
        • Chancellor J.
        • Löthgren M.
        • Simon D.
        • Said G.
        • Le T.K.
        • et al.
        Meta-analysis of duloxetine vs pregabalin and gabapentin in the treatment of diabetic peripheral neuropathic pain.
        BMC Neurol. 2009; 9: 6
        • Ziegler D.
        • Pritchett Y.L.
        • Wang F.
        • Desaiah D.
        • Robinson M.J.
        • Hall J.A.
        • et al.
        Impact of disease characteristics on the efficacy of duloxetine in diabetic peripheral neuropathic pain.
        Diabetes Care. 2007; 30: 664-669
        • Wasan A.D.
        • Ossanna M.J.
        • Raskin J.
        • Wernicke J.F.
        • Robinson M.J.
        • Hall J.A.
        • et al.
        Safety and efficacy of duloxetine in the treatment of diabetic peripheral neuropathic pain in older patients.
        Curr. Drug Saf. 2009; 4: 22-29
        • Sindrup S.H.
        • Otto M.
        • Finnerup N.B.
        • Jensen T.S.
        Antidepressants in the treatment of neuropathic pain.
        Basic Clin. Pharmacol. Toxicol. 2005; 96: 399-409
        • Hearn L.
        • Moore R.A.
        • Derry S.
        • Wiffen P.J.
        • Phillips T.
        Desipramine for neuropathic pain in adults.
        Cochrane Database Syst. Rev. 2014; 2014CD011003
        • Asrar M.M.
        • Kumari S.
        • Sekhar B.C.
        • Bhansali A.
        • Bansal D.
        Relative efficacy and safety of pharmacotherapeutic interventions for diabetic peripheral neuropathy: a systematic review and Bayesian network meta-analysis.
        Pain Physician. 2021; 24: E1-E14
        • Hearn L.
        • Derry S.
        • Phillips T.
        • Moore R.A.
        • Wiffen P.J.
        Imipramine for neuropathic pain in adults.
        Cochrane Database Syst. Rev. 2014; 2014CD010769
        • Fornasari D.
        Pharmacotherapy for neuropathic pain: a review.
        Pain Ther. 2017; 6: 25-33
        • Rosenberger D.C.
        • Blechschmidt V.
        • Timmerman H.
        • Wolff A.
        • Treede R.D.
        Challenges of neuropathic pain: focus on diabetic neuropathy.
        J. Neural Transm. (Vienna). 2020; 127: 589-624
        • Freeman R.
        • Raskin P.
        • Hewitt D.J.
        • Vorsanger G.J.
        • Jordan D.M.
        • Xiang J.
        • et al.
        Randomized study of tramadol/acetaminophen versus placebo in painful diabetic peripheral neuropathy.
        Curr. Med. Res. Opin. 2007; 23: 147-161
        • Harati Y.
        • Gooch C.
        • Swenson M.
        • Edelman S.V.
        • Greene D.
        • Raskin P.
        • et al.
        Maintenance of the long-term effectiveness of tramadol in treatment of the pain of diabetic neuropathy.
        J. Diabetes Complicat. 2000; 14: 65-70
        • Duehmke R.M.
        • Derry S.
        • Wiffen P.J.
        • Bell R.F.
        • Aldington D.
        • Moore R.A.
        Tramadol for neuropathic pain in adults.
        Cochrane Database Syst. Rev. 2017; 6CD003726
        • Schwartz S.
        • Etropolski M.
        • Shapiro D.Y.
        • Okamoto A.
        • Lange R.
        • Haeussler J.
        • et al.
        Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial.
        Curr. Med. Res. Opin. 2011; 27: 151-162
        • Vinik A.I.
        • Shapiro D.Y.
        • Rauschkolb C.
        • Lange B.
        • Karcher K.
        • Pennett D.
        • et al.
        A randomized withdrawal, placebo-controlled study evaluating the efficacy and tolerability of tapentadol extended release in patients with chronic painful diabetic peripheral neuropathy.
        Diabetes Care. 2014; 37: 2302-2309
        • McNicol E.D.
        • Midbari A.
        • Eisenberg E.
        Opioids for neuropathic pain.
        Cochrane Database Syst. Rev. 2013; 2013CD006146
        • Cortright D.N.
        • Szallasi A.
        Biochemical pharmacology of the vanilloid receptor TRPV1.
        An update Eur J Biochem. 2004; 271: 1814-1819
        • The Capsaicin Study Group
        Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study.
        Arch. Intern. Med. 1991; 151: 2225-2229
        • Kulkantrakorn K.
        • Lorsuwansiri C.
        • Meesawatsom P.
        0.025% capsaicin gel for the treatment of painful diabetic neuropathy: a randomized, double-blind, crossover, placebo-controlled trial.
        Pain Pract. 2013; 13: 497-503
        • Polydefkis M.
        • Hauer P.
        • Sheth S.
        • Sirdofsky M.
        • Griffin J.W.
        • McArthur J.C.
        The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy.
        Brain. 2004; 127: 1606-1615
        • Abrams R.M.C.
        • Pedowitz E.J.
        • Simpson D.M.
        A critical review of the capsaicin 8% patch for the treatment of neuropathic pain associated with diabetic peripheral neuropathy of the feet in adults.
        Expert. Rev. Neurother. 2021; 21: 259-266
        • Wolff R.F.
        • Bala M.M.
        • Westwood M.
        • Kessels A.G.
        • Kleijnen J.
        5% lidocaine medicated plaster in painful diabetic peripheral neuropathy (DPN): a systematic review.
        Swiss Med. Wkly. 2010; 140: 297-306
        • Kessler J.A.
        • Shaibani A.
        • Sang C.N.
        • Christiansen M.
        • Kudrow D.
        • Vinik A.
        Shin N; VM202 study group. Gene therapy for diabetic peripheral neuropathy: a randomized, placebo-controlled phase III study of VM202, a plasmid DNA encoding human hepatocyte growth factor.
        Clin Transl Sci. 2021; 14: 1176-1184
        • Tesfaye S.
        • Wilhelm S.
        • Lledo A.
        • Schacht A.
        • Tölle T.
        • Bouhassira D.
        • et al.
        Duloxetine and pregabalin: high-dose monotherapy or their combination? The “COMBO-DN study”--a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain.
        Pain. 2013; 154: 2616-2625
        • Selvarajah D.
        • Petrie J.
        • White D.
        • Julious S.
        • Bortolami O.
        • Cooper C.
        • et al.
        Multicentre, double-blind, crossover trial to identify the Optimal Pathway for TreatIng neurOpathic paiN in Diabetes Mellitus (OPTION-DM): study protocol for a randomised controlled trial.
        Trials. 2018; 19: 578
        • Lindsay T.J.
        • Rodgers B.C.
        • Savath V.
        • Hettinger K.
        Treating diabetic peripheral neuropathic pain.
        Am. Fam. Physician. 2010; 82: 151-158
        • Çakici N.
        • Fakkel T.M.
        • van Neck J.W.
        • Verhagen A.P.
        • Coert J.H.
        Systematic review of treatments for diabetic peripheral neuropathy.
        Diabet. Med. 2016; 33: 1466-1476
        • Racaru S.
        • Sturt J.
        • Celik A.
        The effects of psychological interventions on diabetic peripheral neuropathy: a systematic review and meta-analysis.
        Pain Manag Nurs. 2020; S1524-9042: 30210-30211
        • Stein C.
        • Eibel B.
        • Sbruzzi G.
        • Lago P.D.
        • Plentz R.D.
        Electrical stimulation and electromagnetic field use in patients with diabetic neuropathy: systematic review and meta-analysis.
        Braz J Phys Ther. 2013; 17: 93-104
        • Thakral G.
        • Kim P.J.
        • LaFontaine J.
        • Menzies R.
        • Najafi B.
        • Lavery L.A.
        Electrical stimulation as an adjunctive treatment of painful and sensory diabetic neuropathy.
        J. Diabetes Sci. Technol. 2013; 7: 1202-1209
        • Duarte R.V.
        • Nevitt S.
        • Maden M.
        • Meier K.
        • Taylor R.S.
        • Eldabe S.
        • et al.
        Spinal cord stimulation for the management of painful diabetic neuropathy: a systematic review and meta-analysis of individual patient and aggregate data.
        Pain. 2021 Mar 9; https://doi.org/10.1097/j.pain.0000000000002262
        • Vinik A.I.
        • Maser R.E.
        • Mitchell B.D.
        • Freeman R.
        Diabetic autonomic neuropathy.
        Diabetes Care. 2003; 26: 1553-1579
        • Pfeifer M.A.
        • Weinberg C.R.
        • Cook D.L.
        • Reenan A.
        • Halter J.B.
        • Ensinck J.W.
        • et al.
        Autonomic neural dysfunction in recently diagnosed diabetic subjects.
        Diabetes Care. 1984; 7: 447-453
        • Sharma J.K.
        • Rohatgi A.
        • Sharma D.
        Diabetic autonomic neuropathy: a clinical update.
        J R Coll Physicians Edinb. 2020; 50: 269-273
        • Pafili K.
        • Trypsianis G.
        • Papazoglou D.
        • Maltezos E.
        • Papanas N.
        Cardiovascular autonomic neuropathy and distal symmetric sensorimotor polyneuropathy: these two diabetic microvascular complications do not invariably co-exist.
        Curr. Vasc. Pharmacol. 2020; 18: 50-56
        • Agashe S.
        • Petak S.
        Cardiac autonomic neuropathy in diabetes mellitus.
        Methodist Debakey Cardiovasc J. 2018; 14: 251-256
        • Pop-Busui R.
        Cardiac autonomic neuropathy in diabetes: a clinical perspective.
        Diabetes Care. 2010; 33: 434-441
        • Spallone V.
        • Ziegler D.
        • Freeman R.
        • et al.
        Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management.
        Diabetes Metab. Res. Rev. 2011; 27: 639-653
        • Vinik A.I.
        • Erbas T.
        Recognizing and treating diabetic autonomic neuropathy.
        Cleve. Clin. J. Med. 2001; 68 (928-30, 932, 934-44)
        • Vinik A.I.
        • Casellini C.
        • Parson H.K.
        • Colberg S.R.
        • Nevoret M.L.
        Cardiac autonomic neuropathy in diabetes: a predictor of cardiometabolic events.
        Front. Neurosci. 2018; 12: 591
        • Spallone V.
        Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet.
        Diabetes Metab. J. 2019; 43: 3-30
        • The Diabetes Control and Complications Trial Research Group
        The effect of intensive diabetes therapy on measures of autonomic nervous system function in the diabetes control and complications trial (DCCT).
        Diabetologia. 1998; 41: 416-423
        • Pop-Busui R.
        • Low P.A.
        • Waberski B.H.
        • et al.
        Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the diabetes Control and complications trial/epidemiology of diabetes interventions and complications study (DCCT/EDIC).
        Circulation. 2009; 119: 2886-2893
        • Hathaway D.K.
        • Abell T.
        • Cardoso S.
        • Hartwig M.S.
        • el Gebely S.
        • Gaber A.O.
        Improvement in autonomic and gastric function following pancreas-kidney versus kidney-alone transplantation and the correlation with quality of life.
        Transplantation. 1994; 57: 816-822
        • Cashion A.K.
        • Hathaway D.K.
        • Milstead E.J.
        • Reed L.
        • Gaber A.O.
        Changes in patterns of 24-hr heart rate variability after kidney and kidney-pancreas transplant.
        Transplantation. 1999; 68: 1846-1850
        • Boucek P.
        • Bartos V.
        • Vanĕk I.
        • Hýza Z.
        • Skibová J.
        Diabetic autonomic neuropathy after pancreas and kidney transplantation.
        Diabetologia. 1991; 34: S121-S124
        • Boucek P.
        • Saudek F.
        • Adamec M.
        • Janousek L.
        • Koznarova R.
        • Havrdova T.
        • et al.
        Spectral analysis of heart rate variation following simultaneous pancreas and kidney transplantation.
        Transplant. Proc. 2003; 35: 1494-1498
        • Nusser J.
        • Scheuer R.
        • Abendroth D.
        • Illner W.D.
        • Land W.
        • Landgraf R.
        Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy.
        Diabetologia. 1991; 34: S118-S120
        • Deshmukh T.
        • Emerson P.
        • Anderson P.
        • Kizana E.
        • O’Connell P.J.
        • Holmes-Walker D.J.
        • et al.
        Cardiac autonomic neuropathy is not reversed by euglycemia following islet transplantation.
        Transplantation. 2020 Jun 23; (Epub ahead of print)https://doi.org/10.1097/TP.0000000000003377
        • Azad N.
        • Emanuele N.V.
        • Abraira C.
        • Henderson W.G.
        • Colwell J.
        • Levin S.R.
        • et al.
        The effects of intensive glycemic control on neuropathy in the VA cooperative study on type II diabetes mellitus (VA CSDM).
        J. Diabetes Complicat. 1999; 13: 307-313
        • Röhling M.
        • Strom A.
        • Bönhof G.J.
        • Roden M.
        • Ziegler D.
        Cardiorespiratory fitness and cardiac autonomic function in diabetes.
        Curr Diab Rep. 2017; 17: 125
        • Casellini C.M.
        • Parson H.K.
        • Hodges K.
        • Edwards J.F.
        • Lieb D.C.
        • Wohlgemuth S.D.
        • et al.
        Bariatric surgery restores cardiac and Sudomotor autonomic C-fiber dysfunction towards normal in obese subjects with type 2 diabetes.
        PLoS One. 2016; 11e0154211
        • Kontopoulos A.G.
        • Athyros V.G.
        • Didangelos T.P.
        • Papageorgiou A.A.
        • Avramidis M.J.
        • Mayroudi M.C.
        • et al.
        Effect of chronic quinapril administration on heart rate variability in patients with diabetic autonomic neuropathy.
        Diabetes Care. 1997; 20: 355-361
        • Athyros V.G.
        • Didangelos T.P.
        • Karamitsos D.T.
        • Papageorgiou A.A.
        • Boudoulas H.
        • Kontopoulos A.G.
        Long-term effect of converting enzyme inhibition on circadian sympathetic and parasympathetic modulation in patients with diabetic autonomic neuropathy.
        Acta Cardiol. 1998; 53: 201-209
        • Didangelos T.
        • Veves A.
        Treatment of diabetic cardiovascular autonomic, peripheral and painful neuropathy. Focus on the treatment of cardiovascular autonomic neuropathy with ACE inhibitors.
        Curr. Vasc. Pharmacol. 2020; 18: 158-171
        • Silva L.S.D.
        • de Queiroz N.N.M.
        • de Melo F.T.C.
        • Abrahão Neto J.F.
        • Janaú L.C.
        • de Souza Neto N.J.K.
        • et al.
        Improvement in cardiovascular autonomic neuropathy after high-dose vitamin D supplementation in patients with type 1 diabetes.
        Front Endocrinol (Lausanne). 2020; 11605681
        • Hu X.
        • Li S.
        • Yang G.
        • Liu H.
        • Boden G.
        • Li L.
        Efficacy and safety of aldose reductase inhibitor for the treatment of diabetic cardiovascular autonomic neuropathy: systematic review and meta-analysis.
        PLoS One. 2014; 9e87096
        • Lee S.J.
        • Jeong S.J.
        • Lee Y.C.
        • Lee Y.H.
        • Lee J.E.
        • Kim C.H.
        • et al.
        Effects of high-dose α-lipoic acid on heart rate variability of type 2 diabetes mellitus patients with cardiac autonomic neuropathy in Korea.
        Diabetes Metab. J. 2017; 41: 275-283
        • Ziegler D.
        • Schatz H.
        • Conrad F.
        • Gries F.A.
        • Ulrich H.
        • Reichel G.
        Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN study). Deutsche Kardiale Autonome Neuropathie.
        Diabetes Care. 1997; 20: 369-373
        • Brignole M.
        • Moya A.
        • de Lange F.J.
        • Deharo J.C.
        • Elliott P.M.
        • Fanciulli A.
        • et al.
        2018 ESC guidelines for the diagnosis and management of syncope.
        Eur. Heart J. 2018; 39: 1883-1948
        • Sharma D.
        • Morrison G.
        • Joseph F.
        • Purewal T.S.
        • Weston P.J.
        The role of continuous subcutaneous insulin infusion therapy in patients with diabetic gastroparesis.
        Diabetologia. 2011; 54: 2768-2770
        • Laway B.A.
        • Malik T.S.
        • Khan S.H.
        • Rather T.A.
        Prevalence of abnormal gastric emptying in asymptomatic women with newly detected diabetes and its reversibility after glycemic control-a prospective case control study.
        J. Diabetes Complicat. 2013; 27: 78-81
        • Marathe C.S.
        • Jones K.L.
        • Wu T.
        • Rayner C.K.
        • Horowitz M.
        Gastrointestinal autonomic neuropathy in diabetes.
        Auton. Neurosci. 2020; 229: 102718
        • Phillips L.K.
        • Deane A.M.
        • Jones K.L.
        • Rayner C.K.
        • Horowitz M.
        Gastric emptying and glycaemia in health and diabetes mellitus.
        Nat. Rev. Endocrinol. 2015; 11: 112-128
        • Golbidi S.
        • Laher I.
        Bladder dysfunction in diabetes mellitus.
        Front. Pharmacol. 2010; 1: 136
        • Liu G.
        • Daneshgari F.
        Diabetic bladder dysfunction.
        Chin. Med. J. 2014; 127: 1357-1364
      1. https://clinicaltrials.gov/ct2/show/NCT03176472?recrs=ab&type=Intr&cond=Diabetic+Neuropathies&draw=4&rank=53; accessed on 05.08.2021.

      2. https://clinicaltrials.gov/ct2/show/NCT04688671; accessed on 05.08.2021.

      3. https://clinicaltrials.gov/ct2/show/NCT04707157?recrs=ab&type=Intr&cond=Diabetic+Neuropathies&draw=3&rank=57; accessed on 05.08.2021.

      4. https://clinicaltrials.gov/ct2/show/NCT04146896?recrs=ab&type=Intr&cond=Diabetic+Neuropathies&draw=5; accessed on 05.08.2021.

      5. https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002066-14/DE; accessed on 05.08.2021.

      6. https://clinicaltrials.gov/ct2/show/NCT04469270?recrs=ab&type=Intr&cond=Diabetic+Neuropathies&draw=3; accessed on 05.08.2021.

        • Yang H.
        • Sloan G.
        • Ye Y.
        • Wang S.
        • Duan B.
        • Tesfaye S.
        • et al.
        New perspective in diabetic neuropathy: from the periphery to the brain, a call for early detection, and precision medicine.
        Front Endocrinol (Lausanne). 2020; 10