Advertisement
Review| Volume 123, 154869, October 2021

Download started.

Ok

Glucose transporter 3 in neuronal glucose metabolism: Health and diseases

  • Author Footnotes
    1 W. P., C. T., and L. M. contributed equally to this study.
    Wuxue Peng
    Footnotes
    1 W. P., C. T., and L. M. contributed equally to this study.
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Author Footnotes
    1 W. P., C. T., and L. M. contributed equally to this study.
    Changhong Tan
    Footnotes
    1 W. P., C. T., and L. M. contributed equally to this study.
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Author Footnotes
    1 W. P., C. T., and L. M. contributed equally to this study.
    Lijuan Mo
    Footnotes
    1 W. P., C. T., and L. M. contributed equally to this study.
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Jin Jiang
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Wen Zhou
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Juncong Du
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Xuan Zhou
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Xi Liu
    Correspondence
    Corresponding authors at: 74 Linjiang Road, Yuzhong District, Chongqing 400010, China.
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Lifen Chen
    Correspondence
    Corresponding authors at: 74 Linjiang Road, Yuzhong District, Chongqing 400010, China.
    Affiliations
    Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
    Search for articles by this author
  • Author Footnotes
    1 W. P., C. T., and L. M. contributed equally to this study.

      Highlights

      • GLUT3 stabilizes neuronal glucose uptake and utilization, influences brain development and function and ameliorates aging.
      • GLUT3 is regulated by synaptic activity, hormones, nutrition, insulin, IGF1, and hypoxia-ischemia.
      • GLUT3 participates in various diseases of nervous system, and influence their progression and prognosis.

      Abstract

      Neurons obtain glucose from extracellular environment for energy production mainly depending on glucose transporter 3 (GLUT3). GLUT3 uptakes glucose with high affinity and great transport capacity, and is important for neuronal energy metabolism. This review summarized the role of neuronal GLUT3 in brain metabolism, function and development under both physiological conditions and in diseases, aiming to provide insights into neuronal glucose metabolism and its effect on brain. GLUT3 stabilizes neuronal glucose uptake and utilization, influences brain development and function, and ameliorates aging-related manifestations. Neuronal GLUT3 is regulated by synaptic activity, hormones, nutrition, insulin and insulin-like growth factor 1 in physiological conditions, and is also upregulated by hypoxia-ischemia. GLUT3-related neuronal glucose and energy metabolism is possibly involved in the pathogenesis, pathophysiological mechanism, progression or prognosis of brain diseases, including Alzheimer's disease, Huntington's disease, attention-deficit/hyperactivity disorder and epilepsy. GLUT3 may be a promising therapeutic target of these diseases. This review also briefly discussed the role of other glucose transporters in neuronal glucose metabolism, which work together with GLUT3 to sustain and stabilize glucose and energy supply for neurons. Deficiency in these glucose transporters may also participate in brain diseases, especially GLUT1 and GLUT4.

      Abbreviations:

      (amyloid beta), AD (Alzheimer's disease), ADHD (attention-deficit/hyperactivity disorder), AMPK (adenosine 5′-monophosphate-activated protein kinase), BBB (blood-brain barrier), cAMP (cyclic adenosine monophosphate), cGK (cGMP-dependent protein kinase), CNS (center nerve system), CREB (cAMP-response element binding protein), CSF (cerebrospinal fluid), GC (guanylate cyclase), GLUTs (glucose transporter proteins), HD (Huntington's disease), HIF-1α (hypoxia-inducible factor-1α), IGF1 (insulin-like growth factor 1), lCMRglc (local cerebral metabolic rate of glucose), mTOR (mammalian target of rapamycin), NMDAR (N-methyl-D-aspartic acid receptor), nNOS (nitric oxide synthase), NO (nitric oxide), PKA (protein kinase A), PI3K (phosphatidylinositol 3-kinase), TM (transmembrane domain)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel A.
        • Roeling T.A.
        • Gregg T.R.
        • Kruk M.R.
        Neuropharmacology of brain-stimulation-evoked aggression.
        Neurosci Biobehav Rev. 1999; 23: 359-389https://doi.org/10.1016/s0149-7634(98)00040-2
        • Mueckler M.
        • Thorens B.
        The SLC2 (GLUT) family of membrane transporters.
        Mol Aspects Med. 2013; 34: 121-138https://doi.org/10.1016/j.mam.2012.07.001
        • Deng D.
        • Yan N.
        GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters.
        Protein Sci. 2016; 25: 546-558https://doi.org/10.1002/pro.2858
        • Nagamatsu S.
        • Kornhauser J.M.
        • Burant C.F.
        • Seino S.
        • Mayo K.E.
        • Bell G.I.
        Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization.
        J Biol Chem. 1992; 267: 467-472
        • Arluison M.
        • Quignon M.
        • Thorens B.
        • Leloup C.
        • Penicaud L.
        Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study.
        J Chem Neuroanat. 2004; 28: 137-146https://doi.org/10.1016/j.jchemneu.2004.06.002
        • Apelt J.
        • Mehlhorn G.
        • Schliebs R.
        Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain.
        J Neurosci Res. 1999; 57: 693-705
        • Ibberson M.
        • Riederer B.M.
        • Uldry M.
        • Guhl B.
        • Roth J.
        • Thorens B.
        Immunolocalization of GLUTX1 in the testis and to specific brain areas and vasopressin-containing neurons.
        Endocrinology. 2002; 143: 276-284https://doi.org/10.1210/endo.143.1.8587
        • Simpson I.A.
        • Carruthers A.
        • Vannucci S.J.
        Supply and demand in cerebral energy metabolism: the role of nutrient transporters.
        J Cereb Blood Flow Metab. 2007; 27: 1766-1791https://doi.org/10.1038/sj.jcbfm.9600521
        • Duelli R.
        • Kuschinsky W.
        Brain glucose transporters: relationship to local energy demand.
        News Physiol Sci. 2001; 16: 71-76https://doi.org/10.1152/physiologyonline.2001.16.2.71
        • Kayano T.
        • Fukumoto H.
        • Eddy R.L.
        • Fan Y.S.
        • Byers M.G.
        • Shows T.B.
        • et al.
        Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues.
        J Biol Chem. 1988; 263: 15245-15248
        • Carruthers A.
        • DeZutter J.
        • Ganguly A.
        • Devaskar S.U.
        Will the original glucose transporter isoform please stand up!.
        Am J Physiol Endocrinol Metab. 2009; 297: E836-E848https://doi.org/10.1152/ajpendo.00496.2009
        • Simpson I.A.
        • Dwyer D.
        • Malide D.
        • Moley K.H.
        • Travis A.
        • Vannucci S.J.
        The facilitative glucose transporter GLUT3: 20 years of distinction.
        Am J Physiol Endocrinol Metab. 2008; 295: E242-E253https://doi.org/10.1152/ajpendo.90388.2008
        • Liang H.
        • Bourdon A.K.
        • Chen L.Y.
        • Phelix C.F.
        • Perry G.
        Gibbs free-energy gradient along the path of glucose transport through human glucose transporter 3.
        ACS Chem Nerosci. 2018; 9: 2815-2823https://doi.org/10.1021/acschemneuro.8b00223
        • Watts A.G.
        • Donovan C.M.
        Sweet talk in the brain: glucosensing, neural networks, and hypoglycemic counterregulation.
        Front Neuroendocrinol. 2010; 31: 32-43https://doi.org/10.1016/j.yfrne.2009.10.006
        • Haber R.S.
        • Weinstein S.P.
        • O’Boyle E.
        • Morgello S.
        Tissue distribution of the human GLUT3 glucose transporter.
        Endocrinology. 1993; 132: 2538-2543https://doi.org/10.1210/endo.132.6.8504756
        • Yano H.
        • Seino Y.
        • Inagaki N.
        • Hinokio Y.
        • Yamamoto T.
        • Yasuda K.
        • et al.
        Tissue distribution and species difference of the brain type glucose transporter (GLUT3).
        Biochem Biophys Res Commun. 1991; 174: 470-477https://doi.org/10.1016/0006-291x(91)91440-n
        • Maher F.
        Immunolocalization of GLUT1 and GLUT3 glucose transporters in primary cultured neurons and glia.
        J Neurosci Res. 1995; 42: 459-469https://doi.org/10.1002/jnr.490420404
        • Vannucci S.J.
        • Clark R.R.
        • Koehler-Stec E.
        • Li K.
        • Smith C.B.
        • Davies P.
        • et al.
        Glucose transporter expression in brain: relationship to cerebral glucose utilization.
        Dev Neurosci. 1998; 20: 369-379https://doi.org/10.1159/000017333
        • Jha M.K.
        • Morrison B.M.
        Glia-neuron energy metabolism in health and diseases: new insights into the role of nervous system metabolic transporters.
        Exp Neurol. 2018; 309: 23-31https://doi.org/10.1016/j.expneurol.2018.07.009
        • Stuart C.A.
        • Ross I.R.
        • Howell M.E.
        • McCurry M.P.
        • Wood T.G.
        • Ceci J.D.
        • et al.
        Brain glucose transporter (Glut3) haploinsufficiency does not impair mouse brain glucose uptake.
        Brain Res. 2011; 1384: 15-22https://doi.org/10.1016/j.brainres.2011.02.014
        • Duelli R.
        • Staudt R.
        • Duembgen L.
        • Kuschinsky W.
        Increase in glucose transporter densities of Glut3 and decrease of glucose utilization in rat brain after one week of hypoglycemia.
        Brain Res. 1999; 831: 254-262https://doi.org/10.1016/s0006-8993(99)01463-8
        • Dwyer D.S.
        • Pinkofsky H.B.
        • Liu Y.
        • Bradley R.J.
        Attachment of PC12 cells to adhesion substratum induces the accumulation of glucose transporters (GLUTs) and stimulates glucose metabolism.
        Neurochem Res. 1998; 23: 1107-1116https://doi.org/10.1023/a:1020768321358
        • Lee D.H.
        • Chung M.Y.
        • Lee J.U.
        • Kang D.G.
        • Paek Y.W.
        Changes of glucose transporters in the cerebral adaptation to hypoglycemia.
        Diabetes Res Clin Pract. 2000; 47: 15-23https://doi.org/10.1016/s0168-8227(99)00107-2
        • Uehara Y.
        • Nipper V.
        • McCall A.L.
        Chronic insulin hypoglycemia induces GLUT-3 protein in rat brain neurons.
        Am J Physiol. 1997; 272: E716-E719https://doi.org/10.1152/ajpendo.1997.272.4.E716
        • Hou W.K.
        • Xian Y.X.
        • Zhang L.
        • Lai H.
        • Hou X.G.
        • Xu Y.X.
        • et al.
        Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats.
        Chin Med J (Engl). 2007; 120: 1704-1709
        • Souza C.G.
        • Riboldi B.P.
        • Hansen F.
        • Moreira J.D.
        • Souza D.G.
        • de Assis A.M.
        • et al.
        Chronic sulforaphane oral treatment accentuates blood glucose impairment and may affect GLUT3 expression in the cerebral cortex and hypothalamus of rats fed with a highly palatable diet.
        Food Funct. 2013; 4: 1271-1276https://doi.org/10.1039/c3fo60039d
        • Zeller K.
        • Duelli R.
        • Vogel J.
        • Schröck H.
        • Kuschinsky W.
        Autoradiographic analysis of the regional distribution of Glut3 glucose transporters in the rat brain.
        Brain Res. 1995; 698: 175-179https://doi.org/10.1016/0006-8993(95)00888-w
        • Duelli R.
        • Maurer M.H.
        • Heiland S.
        • Elste V.
        • Kuschinsky W.
        Brain water content, glucose transporter densities and glucose utilization after 3 days of water deprivation in the rat.
        Neurosci Lett. 1999; 271: 13-16https://doi.org/10.1016/s0304-3940(99)00505-4
        • Vannucci S.J.
        Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain.
        J Neurochem. 1994; 62: 240-246https://doi.org/10.1046/j.1471-4159.1994.62010240.x
        • Sherin A.
        • Peeyush K.T.
        • Naijil G.
        • Nandhu M.S.
        • Jayanarayanan S.
        • Jes P.
        • et al.
        The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.
        Eur J Pharmacol. 2011; 651: 128-136https://doi.org/10.1016/j.ejphar.2010.11.012
        • Anitha M.
        • Abraham P.M.
        • Paulose C.S.
        Striatal dopamine receptors modulate the expression of insulin receptor, IGF-1 and GLUT-3 in diabetic rats: effect of pyridoxine treatment.
        Eur J Pharmacol. 2012; 696: 54-61https://doi.org/10.1016/j.ejphar.2012.09.006
        • Vannucci S.J.
        • Maher F.
        • Koehler E.
        • Simpson I.A.
        Altered expression of GLUT-1 and GLUT-3 glucose transporters in neurohypophysis of water-deprived or diabetic rats.
        Am J Physiol. 1994; 267: E605-E611https://doi.org/10.1152/ajpendo.1994.267.4.E605
        • Reagan L.P.
        • Magariños A.M.
        • Yee D.K.
        • Swzeda L.I.
        • Van Bueren A.
        • McCall A.L.
        • et al.
        Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress.
        Brain Res. 2000; 862: 292-300https://doi.org/10.1016/s0006-8993(00)02212-5
        • Pinti M.V.
        • Fink G.K.
        • Hathaway Q.A.
        • Durr A.J.
        • Kunovac A.
        • Hollander J.M.
        Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis.
        Am J Physiol Endocrinol Metab. 2019; 316: E268-E285https://doi.org/10.1152/ajpendo.00314.2018
        • Khayat Z.A.
        • McCall A.L.
        • Klip A.
        Unique mechanism of GLUT3 glucose transporter regulation by prolonged energy demand: increased protein half-life.
        Biochem J. 1998; 333: 713-718https://doi.org/10.1042/bj3330713
        • Vannucci S.J.
        • Gibbs E.M.
        • Simpson I.A.
        Glucose utilization and glucose transporter proteins GLUT-1 and GLUT-3 in brains of diabetic (db/db) mice.
        Am J Physiol. 1997; 272: E267-E274https://doi.org/10.1152/ajpendo.1997.272.2.E267
        • Kainulainen H.
        • Schürmann A.
        • Vilja P.
        • Joost H.G.
        In-vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT3 in brain tissue from streptozotocin-diabetic rats.
        Acta Physiol Scand. 1993; 149: 221-225https://doi.org/10.1111/j.1748-1716.1993.tb09615.x
        • de Vasconcelos V.S.
        • Machado S.S.
        • Guedes R.C.
        • Bandeira B.C.
        • Ximenes-da-Silva A.
        Large litters rearing changes brain expression of GLUT3 and acetylcholinesterase activity in adult rats.
        Neurosci Lett. 2012; 525: 34-38https://doi.org/10.1016/j.neulet.2012.07.054
        • Carayannopoulos M.O.
        • Xiong F.
        • Jensen P.
        • Rios-Galdamez Y.
        • Huang H.
        • Lin S.
        • et al.
        GLUT3 gene expression is critical for embryonic growth, brain development and survival.
        Mol Genet Metab. 2014; 111: 477-483https://doi.org/10.1016/j.ymgme.2014.01.013
        • Ganguly A.
        • McKnight R.A.
        • Raychaudhuri S.
        • Shin B.C.
        • Ma Z.
        • Moley K.
        • et al.
        Glucose transporter isoform-3 mutations cause early pregnancy loss and fetal growth restriction.
        Am J Physiol Endocrinol Metab. 2007; 292: E1241-E1255https://doi.org/10.1152/ajpendo.00344.2006
        • Ferré-Dolcet L.
        • Yeste M.
        • Vendrell M.
        • Rigau T.
        • Rodríguez-Gil J.E.
        • Rivera Del Álamo M.M.
        Placental and uterine expression of GLUT3, but not GLUT1, is related with serum progesterone levels during the first stages of pregnancy in queens.
        Theriogenology. 2018; 121: 82-90https://doi.org/10.1016/j.theriogenology.2018.08.002
        • Shin B.C.
        • Cepeda C.
        • Estrada-Sánchez A.M.
        • Levine M.S.
        • Hodaei L.
        • Dai Y.
        • et al.
        Neural deletion of glucose transporter isoform 3 creates distinct postnatal and adult neurobehavioral phenotypes.
        J Neurosci. 2018; 38: 9579-9599https://doi.org/10.1523/JNEUROSCI.0503-18.2018
        • Birnbaum M.J.
        Identification of a novel gene encoding an insulin-responsive glucose transporter protein.
        Cell. 1989; 57: 305-315https://doi.org/10.1016/0092-8674(89)90968-9
        • Hertz L.
        Bioenergetics of cerebral ischemia: a cellular perspective.
        Neuropharmacology. 2008; 55: 289-309https://doi.org/10.1016/j.neuropharm.2008.05.023
        • von Leden R.E.
        • Moritz K.E.
        • Bermudez S.
        • Jaiswal S.
        • Wilson C.M.
        • Dardzinski B.J.
        • et al.
        Aging alters glucose uptake in the naïve and injured rodent spinal cord.
        Neurosci Lett. 2019; 690: 23-28https://doi.org/10.1016/j.neulet.2018.10.004
        • Wu H.Q.
        • Sha J.J.
        • Wang H.Q.
        • Ren B.
        • Zhang G.L.
        • Li M.
        Expression of GLUT 3 in different brain regions of aged rats.
        Zhejiang Da Xue Xue Bao Yi Xue Ban. 2010; 39: 43-48
        • Fattoretti P.
        • Bertoni-Freddari C.
        • Casoli T.
        • Di Stefano G.
        • Giorgetti G.
        • Solazzi M.
        Ethanol-induced decrease of the expression of glucose transport protein (Glut3) in the central nervous system as a predisposing condition to apoptosis: the effect of age.
        Ann N Y Acad Sci. 2003; 1010: 500-503https://doi.org/10.1196/annals.1299.092
        • Fattoretti P.
        • Bertoni-Freddari C.
        • Casoli T.
        • Di Stefano G.
        • Solazzi M.
        • Giorgetti B.
        Decreased expression of glucose transport protein (Glut3) in aging and vitamin E deficiency.
        Ann N Y Acad Sci. 2002; 973: 293-296https://doi.org/10.1111/j.1749-6632.2002.tb04653.x
        • Fattoretti P.
        • Bertoni-Freddari C.
        • Di Stefano G.
        • Casoli T.
        • Gracciotti N.
        • Solazzi M.
        • et al.
        Quantitative immunohistochemistry of glucose transport protein (Glut3) expression in the rat hippocampus during aging.
        J Histochem Cytochem. 2001; 49: 671-672https://doi.org/10.1177/002215540104900518
        • Oka M.
        • Suzuki E.
        • Asada A.
        • Saito T.
        • Iijima K.M.
        • Ando K.
        Increasing neuronal glucose uptake attenuates brain aging and promotes life span under dietary restriction in Drosophila.
        iScience. 2021; 24 (101979)https://doi.org/10.1016/j.isci.2020.101979
        • Zhang L.
        • Yang Q.
        • Zhang Y.
        • Li X.
        • Dong R.
        • Song C.
        • et al.
        Effects of resveratrol and soy isoflavones on learning and memory ability and expression of glucose transporter in aging model rats.
        Wei Sheng Yan Jiu. 2020; 49 (Chinese): 249-253
        • Błaszczyk J.W.
        Energy metabolism decline in the aging brain-pathogenesis of neurodegenerative disorders.
        Metabolites. 2020; 10: 450https://doi.org/10.3390/metabo10110450
        • Beal M.F.
        Mitochondria take center stage in aging and neurodegeneration.
        Ann Neurol. 2005; 58: 495-505https://doi.org/10.1002/ana.20624
        • Segarra-Mondejar M.
        • Casellas-Díaz S.
        • Ramiro-Pareta M.
        • Müller-Sánchez C.
        • Martorell-Riera A.
        • Hermelo I.
        • et al.
        Synaptic activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth.
        EMBO J. 2018; 37 (e97368)https://doi.org/10.15252/embj.201797368
        • Uemura E.
        • Greenlee H.W.
        Insulin regulates neuronal glucose uptake by promoting translocation of glucose transporter GLUT3.
        Exp Neurol. 2006; 198: 48-53https://doi.org/10.1016/j.expneurol.2005.10.035
        • Ferreira J.M.
        • Burnett A.L.
        • Rameau G.A.
        Activity-dependent regulation of surface glucose transporter-3.
        J Neurosci. 2011; 31: 1991-1999https://doi.org/10.1523/JNEUROSCI.1850-09.2011
        • Cidad P.
        • Almeida A.
        • Bolaños J.P.
        Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5’-AMP-activated protein kinase.
        Biochem J. 2004; 384: 629-636https://doi.org/10.1042/BJ20040886
        • Dimitriadis G.
        • Maratou E.
        • Boutati E.
        • Kollias A.
        • Tsegka K.
        • Alevizaki M.
        • et al.
        IGF-I increases the recruitment of GLUT4 and GLUT3 glucose transporters on cell surface in hyperthyroidism.
        Eur J Endocrinol. 2008; 158: 361-366https://doi.org/10.1530/EJE-07-0532
        • Cheng C.M.
        • Cohen M.
        • Wang J.
        • Bondy C.A.
        Estrogen augments glucose transporter and IGF1 expression in primate cerebral cortex.
        FASEB J. 2001; 15: 907-915https://doi.org/10.1096/fj.00-0398com
        • Ni Y.
        • Zhou Y.
        • Zhou M.
        • Zhang L.
        Akt and cAMP response element binding protein mediate 17β-estradiol regulation of glucose transporter 3 expression in human SH-SY5Y neuroblastoma cell line.
        Neurosci Lett. 2015; 604: 58-63https://doi.org/10.1016/j.neulet.2015.07.041
        • Koehler-Stec E.M.
        • Li K.
        • Maher F.
        • Vannucci S.J.
        • Smith C.B.
        • Simpson I.A.
        Cerebral glucose utilization and glucose transporter expression: response to water deprivation and restoration.
        J Cereb Blood Flow Metab. 2000; 20: 192-200https://doi.org/10.1097/00004647-200001000-00024
        • Hresko R.C.
        • Kraft T.E.
        • Quigley A.
        • Carpenter E.P.
        • Hruz P.W.
        Mammalian glucose transporter activity is dependent upon anionic and conical phospholipids.
        J Biol Chem. 2016; 291: 17271-17282https://doi.org/10.1074/jbc.M116.730168
        • Liu Z.
        • Patil I.
        • Sancheti H.
        • Yin F.
        • Cadenas E.
        Effects of lipoic acid on high-fat diet-induced alteration of synaptic plasticity and brain glucose metabolism: a PET/CT and 13C-NMR study.
        Sci Rep. 2017; 7: 5391https://doi.org/10.1038/s41598-017-05217-z
        • Heidenrich K.A.
        • Gilmore P.R.
        • Garvey W.T.
        Glucose transport in primary cultured neurons.
        J Neurosci Res. 1989; 22: 397-407https://doi.org/10.1002/jnr.490220405
        • Yu J.
        • Li J.
        • Zhang S.
        • Xu X.
        • Zheng M.
        • Jiang G.
        • et al.
        IGF-1 induces hypoxia-inducible factor 1α-mediated GLUT3 expression through PI3K/Akt/mTOR dependent pathways in PC12 cells.
        Brain Res. 2012; 1430: 18-24https://doi.org/10.1016/j.brainres.2011.10.046
        • Fladeby C.
        • Skar R.
        • Serck-Hanssen G.
        Distinct regulation of glucose transport and GLUT1/GLUT3 transporters by glucose deprivation and IGF-I in chromaffin cells.
        Biochim Biophys Acta. 2003; 1593: 201-208https://doi.org/10.1016/s0167-4889(02)00390-7
        • Peng W.
        • Liu X.
        • Tan C.
        • Zhou W.
        • Jiang J.
        • Zhou X.
        • et al.
        Zinc-α2-glycoprotein relieved seizure-induced neuronal glucose uptake impairment via insulin-like growth factor 1 receptor-regulated glucose transporter 3 expression.
        J Neurochem. 2021; 157: 695-709https://doi.org/10.1111/jnc.15254
        • Herbet M.
        • Natorska-Chomicka D.
        • Korga A.
        • Ostrowska M.
        • Izdebska M.
        • Gawrońska-Grzywacz M.
        • et al.
        Altered expression of genes involved in brain energy metabolism as adaptive responses in rats exposed to chronic variable stress; changes in cortical level of glucogenic and neuroactive amino acids.
        Mol Med Rep. 2019; 19: 2386-2396https://doi.org/10.3892/mmr.2019.9865
        • Vannucci S.J.
        • Reinhart R.
        • Maher F.
        • Bondy C.A.
        • Lee W.H.
        • Vannucci R.C.
        • et al.
        Alterations in GLUT1 and GLUT3 glucose transporter gene expression following unilateral hypoxia-ischemia in the immature rat brain.
        Brain Res Dev Brain Res. 1998; 107: 255-264https://doi.org/10.1016/s0165-3806(98)00021-2
        • Chen C.
        • Chen H.J.
        • Qian L.H.
        • Jiang M.H.
        • Chen G.Y.
        Effect of different blood glucose levels on the expression of cerebral GLUT3 mRNA in neonatal rats with hypoxia-ischemia.
        Zhongguo Dang Dai Er Ke Za Zhi. 2006; 8: 395-401
        • Bondy C.A.
        • Lee W.H.
        • Zhou J.
        Ontogeny and cellular distribution of brain glucose transporter gene expression.
        Mol Cell Neurosci. 1992; 3: 305-314https://doi.org/10.1016/1044-7431(92)90027-y
        • Simpson I.A.
        • Chundu K.R.
        • Davies-Hill T.
        • Honer W.G.
        • Davies P.
        Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease.
        Ann Neurol. 1994; 35: 546-551https://doi.org/10.1002/ana.410350507
        • An Y.
        • Varma V.R.
        • Varma S.
        • Casanova R.
        • Dammer E.
        • Pletnikova O.
        • et al.
        Evidence for brain glucose dysregulation in Alzheimer’s disease.
        Alzheimers Dement. 2018; 14: 318-329https://doi.org/10.1016/j.jalz.2017.09.011
        • Huang S.M.
        • Tsai S.Y.
        • Lin J.A.
        • Wu C.H.
        • Yen G.C.
        Cytoprotective effects of hesperetin and hesperidin against amyloid β-induced impairment of glucose transport through downregulation of neuronal autophagy.
        Mol Nutr Food Res. 2012; 56: 601-609https://doi.org/10.1002/mnfr.201100682
        • Uemura E.
        • Greenlee H.W.
        Amyloid beta-peptide inhibits neuronal glucose uptake by preventing exocytosis.
        Exp Neurol. 2001; 170: 270-276https://doi.org/10.1006/exnr.2001.7719
        • Prapong T.
        • Buss J.
        • Hsu W.H.
        • Heine P.
        • West Greenlee H.
        • Uemura E.
        Amyloid beta-peptide decreases neuronal glucose uptake despite causing increase in GLUT3 mRNA transcription and GLUT3 translocation to the plasma membrane.
        Exp Neurol. 2002; 174: 253-258https://doi.org/10.1006/exnr.2001.7861
        • Liu Y.
        • Liu F.
        • Iqbal K.
        • Grundke-Iqbal I.
        • Gong C.X.
        Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease.
        FEBS Lett. 2008; 582: 359-364https://doi.org/10.1016/j.febslet.2007.12.035
        • Gu J.
        • Jin N.
        • Ma D.
        • Chu D.
        • Iqbal K.
        • Gong C.X.
        • et al.
        Calpain I activation causes GLUT3 proteolysis and downregulation of O-GlcNAcylation in Alzheimer’s disease brain.
        J Alzheimers Dis. 2018; 62: 1737-1746https://doi.org/10.3233/JAD-171047
        • Jin N.
        • Qian W.
        • Yin X.
        • Zhang L.
        • Iqbal K.
        • Grundke-Iqbal I.
        • et al.
        CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer’s disease.
        Nucleic Acids Res. 2013; 41: 3240-3256https://doi.org/10.1093/nar/gks1227
        • Arseniou S.
        • Siokas V.
        • Aloizou A.M.
        • Stamati P.
        • Mentis A.A.
        • Tsouris Z.
        • et al.
        SLC2A3 rs12842 polymorphism and risk for Alzheimer’s disease.
        Neurol Res. 2020; 42: 853-861https://doi.org/10.1080/01616412.2020.1786973
        • McClory H.
        • Williams D.
        • Sapp E.
        • Gatune L.W.
        • Wang P.
        • DiFiglia M.
        • et al.
        Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice.
        Acta Neuropathol Commun. 2014; 2: 179https://doi.org/10.1186/s40478-014-0178-7
        • Ciarmiello A.
        • Cannella M.
        • Lastoria S.
        • Simonelli M.
        • Frati L.
        • Rubinsztein D.C.
        • et al.
        Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease.
        J Nucl Med. 2006; 47: 215-222
        • Gamberino W.C.
        • Brennan Jr., W.A.
        Glucose transporter isoform expression in Huntington’s disease brain.
        J Neurochem. 1994; 63: 1392-1397https://doi.org/10.1046/j.1471-4159.1994.63041392.x
        • Vittori A.
        • Breda C.
        • Repici M.
        • Orth M.
        • Roos R.A.
        • Outeiro T.F.
        • et al.
        Hollox EJ; REGISTRY investigators of the European Huntington’s disease network. Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington’s disease.
        Hum Mol Genet. 2014; 23: 3129-3137https://doi.org/10.1093/hmg/ddu022
        • Besson M.T.
        • Alegría K.
        • Garrido-Gerter P.
        • Barros L.F.
        • Liévens J.C.
        Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.
        PLoS One. 2015; 10e0118765https://doi.org/10.1371/journal.pone.0118765
        • Lesch K.P.
        • Selch S.
        • Renner T.J.
        • Jacob C.
        • Nguyen T.T.
        • Hahn T.
        • et al.
        Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree.
        Mol Psychiatry. 2011; 16: 491-503https://doi.org/10.1038/mp.2010.29
        • Merker S.
        • Reif A.
        • Ziegler G.C.
        • Weber H.
        • Mayer U.
        • Ehlis A.C.
        • et al.
        SLC2A3 single-nucleotide polymorphism and duplication influence cognitive processing and population-specific risk for attention-deficit/hyperactivity disorder.
        J Child Psychol Psychiatry. 2017; 58: 798-809https://doi.org/10.1111/jcpp.12702
        • Engel Jr., J.
        • Kuhl D.E.
        • Phelps M.E.
        Regional brain metabolism during seizures in humans.
        Adv Neurol. 1983; 34: 141-148
        • Engel Jr., J.
        • Kuhl D.E.
        • Phelps M.E.
        • Rausch R.
        • Nuwer M.
        Local cerebral metabolism during partial seizures.
        Neurology. 1983; 33: 400-413https://doi.org/10.1212/wnl.33.4.400
        • Gronlund K.M.
        • Gerhart D.Z.
        • Leino R.L.
        • McCall A.L.
        • Drewes L.R.
        Chronic seizures increase glucose transporter abundance in rat brain.
        J Neuropathol Exp Neurol. 1996; 55: 832-840https://doi.org/10.1097/00005072-199607000-00008
        • Leroy C.
        • Pierre K.
        • Simpson I.A.
        • Pellerin L.
        • Vannucci S.J.
        • Nehlig A.
        Temporal changes in mRNA expression of the brain nutrient transporters in the lithium-pilocarpine model of epilepsy in the immature and adult rat.
        Neurobiol Dis. 2011; 43: 588-597https://doi.org/10.1016/j.nbd.2011.05.007
        • Szablewski L.
        Glucose transporters in brain: in health and in Alzheimer’s disease.
        J Alzheimers Dis. 2017; 55: 1307-1320https://doi.org/10.3233/JAD-160841
        • Benarroch E.E.
        Brain glucose transporters: implications for neurologic disease.
        Neurology. 2014; 82: 1374-1379https://doi.org/10.1212/WNL.0000000000000328
        • De Giorgis V.
        • Veggiotti P.
        GLUT1 deficiency syndrome 2013: current state of the art.
        Seizure. 2013; 22: 803-811https://doi.org/10.1016/j.seizure.2013.07.003
        • Winkler E.A.
        • Nishida Y.
        • Sagare A.P.
        • Rege S.V.
        • Bell R.D.
        • Perlmutter D.
        • et al.
        GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration.
        Nat Neurosci. 2015; 18: 521-530https://doi.org/10.1038/nn.3966
        • Benomar Y.
        • Naour N.
        • Aubourg A.
        • Bailleux V.
        • Gertler A.
        • Djiane J.
        • et al.
        Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.
        Endocrinology. 2006; 147: 2550-2556https://doi.org/10.1210/en.2005-1464
        • Mueckler M.
        Facilitative glucose transporters.
        Eur J Biochem. 1994; 219: 713-725https://doi.org/10.1111/j.1432-1033.1994.tb18550.x
        • Pearson-Leary J.
        • McNay E.C.
        Novel roles for the insulin-regulated glucose transporter-4 in hippocampally dependent memory.
        J Neurosci. 2016; 36: 11851-11864https://doi.org/10.1523/JNEUROSCI.1700-16.2016
        • Thorens B.
        GLUT2, glucose sensing and glucose homeostasis.
        Diabetologia. 2015; 58: 221-232https://doi.org/10.1007/s00125-014-3451-1
        • Reagan L.P.
        • Gorovits N.
        • Hoskin E.K.
        • Alves S.E.
        • Katz E.B.
        • Grillo C.A.
        • et al.
        Localization and regulation of GLUTx1 glucose transporter in the hippocampus of streptozotocin diabetic rats.
        Proc Natl Acad Sci U S A. 2001; 98: 2820-2825https://doi.org/10.1073/pnas.051629798