Advertisement
Basic Science| Volume 125, 154914, December 2021

CC chemokine ligand 3 deficiency ameliorates diet-induced steatohepatitis by regulating liver macrophage recruitment and M1/M2 status in mice

  • Author Footnotes
    1 These authors equally contributed to this study.
    Liang Xu
    Correspondence
    Correspondence to: L. Xu, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
    Footnotes
    1 These authors equally contributed to this study.
    Affiliations
    Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan

    School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
    Search for articles by this author
  • Author Footnotes
    1 These authors equally contributed to this study.
    Yongping Chen
    Footnotes
    1 These authors equally contributed to this study.
    Affiliations
    First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
    Search for articles by this author
  • Mayumi Nagashimada
    Affiliations
    Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
    Search for articles by this author
  • Yinhua Ni
    Affiliations
    Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
    Search for articles by this author
  • Fen Zhuge
    Affiliations
    Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
    Search for articles by this author
  • Guanliang Chen
    Affiliations
    Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
    Search for articles by this author
  • Haoran Li
    Affiliations
    School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
    Search for articles by this author
  • Tongtong Pan
    Affiliations
    First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
    Search for articles by this author
  • Tatsuya Yamashita
    Affiliations
    Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan

    Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
    Search for articles by this author
  • Naofumi Mukaida
    Affiliations
    Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
    Search for articles by this author
  • Shuichi Kaneko
    Affiliations
    Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Ishikawa 920-8641, Japan
    Search for articles by this author
  • Tsuguhito Ota
    Affiliations
    Department of Cell Metabolism and Nutrition, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
    Search for articles by this author
  • Naoto Nagata
    Correspondence
    Correspondence to: N. Nagata, Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
    Affiliations
    Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
    Search for articles by this author
  • Author Footnotes
    1 These authors equally contributed to this study.
Published:October 14, 2021DOI:https://doi.org/10.1016/j.metabol.2021.154914

      Highlights

      • CCL3 levels were elevated in both serum and liver of NASH patients and animal model of NASH.
      • CCL3 protein colocalized with liver macrophages, especially proinflammatory M1-like macrophages.
      • Deficient in CCL3 attenuated liver macrophage recruitment and promoted M2 macrophage polarization, resulting in prevented diet-induced steatohepatitis, hepatic fibrosis, and insulin resistance.
      • CCL3 deletion in bone marrow cells and ob/ob mice prevented diet-induced steatohepatitis, hepatic fibrosis, and insulin resistance.

      Abstract

      Background and aims

      The global prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing. Chemokines and their receptors have potential as therapeutic targets of NAFLD. We investigated the role of C C chemokine ligand 3 (CCL3) in the development of murine and human NAFLD.

      Methods

      CCL3-knockout mice (CCL3−/−) and littermate CCL3 wild-type control mice (WT) were fed a high-cholesterol and high-fat (CL) diet for 16 weeks to induce NAFLD. We investigated the impact of CCL3 gene deletion in bone marrow cells and leptin-deficient ob/ob mice on CL diet-induced steatohepatitis. We assayed the serum CCL3 levels in 36 patients with biopsy-proven NAFLD and nine healthy control subjects.

      Results

      Compared with normal chow (NC), the CL diet induced steatohepatitis and hepatic fibrosis and elevated the plasma CCL3 level. In the liver, CCL3 protein colocalized with F4/80+ macrophages, especially CD11c+ M1-like macrophages, rather than other cell types. CCL3−/− attenuated CL diet-induced steatohepatitis and fibrosis associated with M2-dominant liver macrophages compared with the WT. The reconstitution of bone marrow (BM) cells from CCL3−/− attenuated steatohepatitis in WT mice fed a CL diet. Furthermore, crossing CCL3−/− onto the ob/ob background prevented CL diet-induced NAFLD in ob/ob mice, which was associated with a lesser inflammatory phenotype of liver macrophages. Also, the serum and hepatic levels of CCL3 were significantly increased in patients with non-alcoholic steatohepatitis (NASH) compared to those with simple fatty liver (NAFL) and healthy subjects.

      Conclusion

      Our data indicate that CCL3 facilitates macrophage infiltration into the liver and M1 polarization in the progression of steatohepatitis and highlight the need for further studies to determine the effect of CCL3-CCR1 and -CCR5 signaling blockade on the treatment of NAFLD.

      Abbreviations:

      Acox (acyl-coenzyme A oxidase), ALT (alanine aminotransferase), Arg (arginine), AST (aspartate aminotransferase), BM (bone marrow), CCL (CC chemokine ligand), CCR (CC chemokine receptor), CL (high-cholesterol and high-fat diet), Col1α1 (collagen type I alpha 1), Cpt (carnitine palmitoyltransferase), DMEM (Dulbecco's modified Eagle's medium), FBS (fetal bovine serum), ER (endoplasmic reticulum), ERK (extracellular signal-regulated protein kinase), Fas (fatty acid synthase), GTT (glucose tolerance test), HSC (hepatic stellate cell), IL (interleukin), JNK (c-Jun N-terminal protein kinase), Lcad (long-chain acyl-CoA dehydrogenase), LPS (lipopolysaccharide), MAPK (mitogen-activated protein kinase), NAFLD (non-alcoholic fatty liver disease), NASH (non-alcoholic steatohepatitis), NC (normal chow), NEFA (non-esterified fatty acids), Pai-1 (plasminogen activator inhibitor-1), PCR (polymerase chain reaction), Pgc (peroxisome proliferative activated receptor-gamma coactivator), Ppar (peroxisome proliferator activated receptor), PTT (pyruvate tolerance test), ROS (reactive oxygen species), SMA (smooth muscle actin), Srebp (sterol regulatory element-binding protein), TBARS (thiobarbituric acid reactive substances), TC (total cholesterol), Tgf (transforming growth factor), TG (triglyceride), Tnf (tumor necrosis factor), WT (wild type)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marra F.
        • Tacke F.
        Roles for chemokines in liver disease.
        Gastroenterology. 2014; 147: 577-594
        • Roh Y.S.
        • Seki E.
        Chemokines and chemokine receptors in the development of NAFLD.
        Adv Exp Med Biol. 2018; 1061: 45-53
        • Cai J.
        • Zhang X.J.
        • Li H.
        The role of innate immune cells in nonalcoholic steatohepatitis.
        Hepatology. 2019; 70: 1026-1037
        • Westerbacka J.
        • Kolak M.
        • Kiviluoto T.
        • Arkkila P.
        • Siren J.
        • Hamsten A.
        • et al.
        Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects.
        Diabetes. 2007; 56: 2759-2765
        • Haukeland J.W.
        • Damas J.K.
        • Konopski Z.
        • Loberg E.M.
        • Haaland T.
        • Goverud I.
        • et al.
        Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2.
        J Hepatol. 2006; 44: 1167-1174
        • Obstfeld A.E.
        • Sugaru E.
        • Thearle M.
        • Francisco A.M.
        • Gayet C.
        • Ginsberg H.N.
        • et al.
        C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis.
        Diabetes. 2010; 59: 916-925
        • Miura K.
        • Yang L.
        • Rooijen N.
        • Ohnishi H.
        • Seki E.
        Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2.
        Am J Physiol Gastrointest Liver Physiol. 2012; 302: G1310-G1321
        • Baeck C.
        • Wehr A.
        • Karlmark K.R.
        • Heymann F.
        • Vucur M.
        • Gassler N.
        • et al.
        Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury.
        Gut. 2012; 61: 416-426
        • Henao-Mejia J.
        • Elinav E.
        • Jin C.
        • Hao L.
        • Mehal W.Z.
        • Strowig T.
        • et al.
        Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity.
        Nature. 2012; 482: 179-185
        • Kitade H.
        • Sawamoto K.
        • Nagashimada M.
        • Inoue H.
        • Yamamoto Y.
        • Sai Y.
        • et al.
        CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status.
        Diabetes. 2012; 61: 1680-1690
        • Kirovski G.
        • Gäbele E.
        • Dorn C.
        • Moleda L.
        • Niessen C.
        • Weiss T.
        • et al.
        Hepatic steatosis causes induction of the chemokine RANTES in the absence of significant hepatic inflammation.
        Int J Clin Exp Pathol. 2010; 3: 675-680
        • Seki E.
        • De Minicis S.
        • Gwak G.-Y.
        • Kluwe J.
        • Inokuchi S.
        • Bursill C.A.
        • et al.
        CCR1 and CCR5 promote hepatic fibrosis in mice.
        J Clin Investig. 2009; 119: 1858-1870
        • Berres M.L.
        • Koenen R.R.
        • Rueland A.
        • Zaldivar M.M.
        • Heinrichs D.
        • Sahin H.
        • et al.
        Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice.
        J Clin Invest. 2010; 120: 4129-4140
        • Olson T.
        • Ley K.
        Chemokines and chemokine receptors in leukocyte trafficking.
        Am J Physiol Regul Integr Comp Physiol. 2002; 283: R7-28
        • Gerhardt C.C.
        • Romero I.A.
        • Cancello R.
        • Camoin L.
        • Strosberg A.D.
        Chemokines control fat accumulation and leptin secretion by cultured human adipocytes.
        Mol Cell Endocrinol. 2001; 175: 81-92
        • Lukacs N.W.
        • Strieter R.M.
        • Elner V.M.
        • Evanoff H.L.
        • Burdick M.
        • Kunkel S.L.
        Intercellular adhesion molecule-1 mediates the expression of monocyte-derived MIP-1 alpha during monocyte-endothelial cell interactions.
        Blood. 1994; 83: 1174-1178
        • Zhang G.
        • Liu H.B.
        • Zhou L.
        • Cui X.Q.
        • Fan X.H.
        CCL3 participates in the development of rheumatoid arthritis by activating AKT.
        Eur Rev Med Pharmacol Sci. 2018; 22: 6625-6632
        • Kennedy A.
        • Gruen M.L.
        • Gutierrez D.A.
        • Surmi B.K.
        • Orr J.S.
        • Webb C.D.
        • et al.
        Hasty impact of macrophage inflammatory protein-1α deficiency on atherosclerotic lesion formation, hepatic steatosis, and adipose tissue expansion.
        PLoS One. 2012; 7e31508
        • Coenen K.R.
        • Gruen M.L.
        • Chait A.
        • Hasty A.H.
        Diet-induced increases in adiposity, but not plasma lipids, promote macrophage infiltration into white adipose tissue.
        Diabetes. 2007; 56: 564-573
        • du Plessis J.
        • Korf H.
        • van Pelt J.
        • Windmolders P.
        • Vander Elst I.
        • Verrijken A.
        • et al.
        Pro-inflammatory cytokines but not endotoxin-related parameters associate with disease severity in patients with NAFLD.
        PLoS One. 2016; 11e0166048
        • Kleiner D.E.
        • Brunt E.M.
        • Van Natta M.
        • Behling C.
        • Contos M.J.
        • Cummings O.W.
        • et al.
        Design and validation of a histological scoring system for nonalcoholic fatty liver disease.
        Hepatology. 2005; 41: 1313-1321
        • Xu L.
        • Nagata N.
        • Nagashimada M.
        • Zhuge F.
        • Ni Y.
        • Chen G.
        • et al.
        A porcine placental extract prevents steatohepatitis by suppressing activation of macrophages and stellate cells in mice.
        Oncotarget. 2018; 9: 15047-15060
        • Ota T.
        • Gayet C.
        • Ginsberg H.N.
        Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents.
        J Clin Invest. 2008; 118: 316-332
        • Zhuge F.
        • Ni Y.
        • Nagashimada M.
        • Nagata N.
        • Xu L.
        • Mukaida N.
        • et al.
        DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization.
        Diabetes. 2016; 65: 2966-2979
        • Jourdan T.
        • Nicoloro S.M.
        • Zhou Z.
        • Shen Y.
        • Liu J.
        • Coffey N.J.
        • et al.
        Decreasing CB1 receptor signaling in Kupffer cells improves insulin sensitivity in obese mice.
        Mol Metab. 2017; 6: 1517-1528
        • Ni Y.
        • Zhuge F.
        • Nagashimada M.
        • Nagata N.
        • Xu L.
        • Yamamoto S.
        • et al.
        Lycopene prevents the progression of lipotoxicity-induced nonalcoholic steatohepatitis by decreasing oxidative stress in mice.
        Free Radic Biol Med. 2020; 152: 571-582
        • Matsuzawa N.
        • Takamura T.
        • Kurita S.
        • Misu H.
        • Ota T.
        • Ando H.
        • et al.
        Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet.
        Hepatology. 2007; 46: 1392-1403
        • Ota T.
        • Takamura T.
        • Kurita S.
        • Matsuzawa N.
        • Kita Y.
        • Uno M.
        • et al.
        Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis.
        Gastroenterology. 2007; 132: 282-293
        • Salazar-Mather Thais P.
        • Orange J.S.
        • Biron Christine A.
        Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1alpha (MIP-1alpha)-dependent pathways.
        J Exp Med. 1998; 187: 1-14
        • Ajuebor M.N.
        • Hogaboam C.M.
        • Le T.
        • Proudfoot A.E.
        • Swain M.G.
        CCL3/MIP-1alpha is pro-inflammatory in murine T cell-mediated hepatitis by recruiting CCR1-expressing CD4+ T cells to the liver.
        Eur J Immunol. 2004; 34: 2907-2918
        • Shi M.
        • Godleski J.
        • Paulauskis J.
        Regulation of macrophage inflammatory protein-1alpha mRNA by oxidative stress.
        J Biol Chem. 1996; 271: 5878-5883
        • Bae Y.S.
        • Lee J.H.
        • Choi S.H.
        • Kim S.
        • Almazan F.
        • Witztum J.L.
        • et al.
        Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2.
        Circ Res. 2009; 104 (following 8): 210-218
        • Ni Y.
        • Nagashimada M.
        • Zhan L.
        • Nagata N.
        • Kobori M.
        • Sugiura M.
        • et al.
        Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, beta-cryptoxanthin.
        Endocrinology. 2015; 156: 987-999
        • Kobori M.
        • Ni Y.
        • Takahashi Y.
        • Watanabe N.
        • Sugiura M.
        • Ogawa K.
        • et al.
        beta-Cryptoxanthin alleviates diet-induced nonalcoholic steatohepatitis by suppressing inflammatory gene expression in mice.
        PLoS One. 2014; 9: e98294
        • Koliaki C.
        • Szendroedi J.
        • Kaul K.
        • Jelenik T.
        • Nowotny P.
        • Jankowiak F.
        • et al.
        Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis.
        Cell Metab. 2015; 21: 739-746
        • Oh D.Y.
        • Morinaga H.
        • Talukdar S.
        • Bae E.J.
        • Olefsky J.M.
        Increased macrophage migration into adipose tissue in obese mice.
        Diabetes. 2012; 61: 346-354
        • Van Herck M.A.
        • Weyler J.
        • Kwanten W.J.
        • Dirinck E.L.
        • De Winter B.Y.
        • Francque S.M.
        • et al.
        The differential roles of T cells in non-alcoholic fatty liver disease and obesity.
        Front Immunol. 2019; 10: 82
        • Sutti S.
        • Jindal A.
        • Locatelli I.
        • Vacchiano M.
        • Gigliotti L.
        • Bozzola C.
        • et al.
        Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH.
        Hepatology. 2014; 59: 886-897
        • Ma K.L.
        • Ruan X.Z.
        • Powis S.H.
        • Chen Y.
        • Moorhead J.F.
        • Varghese Z.
        Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice.
        Hepatology. 2008; 48: 770-781
        • Stienstra R.
        • Saudale F.
        • Duval C.
        • Keshtkar S.
        • Groener J.E.
        • van Rooijen N.
        • et al.
        Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity.
        Hepatology. 2010; 51: 511-522
        • Huang W.
        • Metlakunta A.
        • Dedousis N.
        • Zhang P.
        • Sipula I.
        • Dube J.J.
        • et al.
        Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance.
        Diabetes. 2010; 59: 347-357
        • Patsouris D.
        • Li P.P.
        • Thapar D.
        • Chapman J.
        • Olefsky J.M.
        • Neels J.G.
        Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals.
        Cell Metab. 2008; 8: 301-309
        • Odegaard J.I.
        • Ricardo-Gonzalez R.R.
        • Red Eagle A.
        • Vats D.
        • Morel C.R.
        • Goforth M.H.
        • et al.
        Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance.
        Cell Metab. 2008; 7: 496-507
        • Seki E.
        • De Minicis S.
        • Osterreicher C.H.
        • Kluwe J.
        • Osawa Y.
        • Brenner D.A.
        • et al.
        TLR4 enhances TGF-beta signaling and hepatic fibrosis.
        Nat Med. 2007; 13: 1324-1332
        • Heinrichs D.
        • Berres M.L.
        • Nellen A.
        • Fischer P.
        • Scholten D.
        • Trautwein C.
        • et al.
        The chemokine CCL3 promotes experimental liver fibrosis in mice.
        PLoS One. 2013; 8e66106
        • Robert F.
        • Schwabe R.B.
        • Brenner David A.
        Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration.
        Am J Physiol Gastrointest Liver Physiol. 2003; 285: 949-958