Advertisement
Articles from the Diabetes: State-of-the-art 100 years after the discovery of insulin Special Issue, Edited by Stergios Polyzos and Christos Mantzoros| Volume 126, 154920, January 2022

Download started.

Ok

Epigenetic modifications in diabetes

Published:October 26, 2021DOI:https://doi.org/10.1016/j.metabol.2021.154920

      Highlights

      • Diabetes epidemic is an epidemic of its complications.
      • Epigenetic modifications can modulate the interplay between genes and environment.
      • Epigenetic modifications are implicated in diabetes and its complications.
      • Epigenetic changes are reprogrammable, and can be targeted with therapeutics.

      Abstract

      Diabetes is now considered as a ‘silent epidemic’ that claims over four million lives every year, and the disease knows no socioeconomic boundaries. Despite extensive efforts by the National and International organizations, and cutting-edge research, about 11% world's population is expected to suffer from diabetes (and its complications) by year 2045. This life-long disease damages both the microvasculature and the macrovasculature of the body, and affects many metabolic and molecular pathways, altering the expression of many genes. Recent research has shown that external factors, such as environmental factors, lifestyle and pollutants can also regulate gene expression, and contribute in the disease development and progression. Many epigenetic modifications are implicated in the development of micro- and macro- vascular complications including DNA methylation and histone modifications of several genes implicated in their development. Furthermore, several noncoding RNAs, such as micro RNAs and long noncoding RNAs, are also altered, affecting many biochemical pathways. Epigenetic modifications, however, have the advantage that they could be passed to the next generation, or can be erased. They are now being explored as therapeutical target(s) in the cancer field, which opens up the possibility to use them for treating diabetes and preventing/slowing down its complications.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maric-Bilkan C.
        Sex differences in micro- and macro-vascular complications of diabetes mellitus.
        Clin Sci (Lond). 2017; 131: 833-846
        • Einarson T.R.
        • Acs A.
        • Ludwig C.
        • Panton U.H.
        Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017.
        Cardiovasc Diabetol. 2018; 17: 83
        • Ergul A.
        • Kelly-Cobbs A.
        • Abdalla M.
        • Fagan S.C.
        Cerebrovascular complications of diabetes: focus on stroke.
        Endocrine, Metab Immune Dis Drug Targets. 2012; 12: 148-158
        • Frank R.N.
        Diabetic retinopathy.
        N Engl J Med. 2004; 350: 48-58
        • Feldman E.L.
        • Callaghan B.C.
        • Pop-Busui R.
        • Zochodne D.W.
        • Wright D.E.
        • Bennett D.L.
        • et al.
        Diabetic neuropathy.
        Nat Rev Dis Primers. 2019; 5: 41
        • Kato M.
        • Natarajan R.
        Diabetic nephropathy--emerging epigenetic mechanisms.
        Nat Rev Nephrol. 2014; 10: 517-530
        • Balakumar P.
        • Maung U.K.
        • Jagadeesh G.
        Prevalence and prevention of cardiovascular disease and diabetes mellitus.
        Pharm Res. 2016; 113: 600-609
        • Greenhalgh D.G.
        Wound healing and diabetes mellitus.
        Clin Plast Surg. 2003; 30: 37-45
        • Kowluru R.A.
        • Kowluru A.
        • Mishra M.
        • Kumar B.
        Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy.
        Prog Retin Eye Res. 2015; 48: 40-61
        • Kowluru R.A.
        • Mishra M.
        Epigenetic regulation of redox signaling in diabetic retinopathy: role of Nrf2.
        Free Radic Biol Med. 2017; 103: 155-164
        • Diabetes Control and Complications Trial Research Group
        The effect of intensive treatment of diabetes on the development of long-term complications in insulin-dependent diabetes mellitus.
        N Engl J Med. 1993; 329: 977-986
        • Frank R.N.
        Diabetic retinopathy and systemic factors.
        Middle East Afr J Ophthalmol. 2015; 22: 151-156
        • Fraga M.F.
        • Esteller M.
        Towards the human cancer epigenome: a first draft of histone modifications.
        Cell Cycle. 2005; 4: 1377-1381
        • Moosavi A.
        • Motevalizadeh Ardekani A.
        Role of epigenetics in biology and human diseases.
        Iran Biomed J. 2016; 20: 246-258
        • Tammen S.A.
        • Friso S.
        • Choi S.W.
        Epigenetics: the link between nature and nurture.
        Mol Asoects Med. 2013; 34: 753-764
        • Handy D.E.
        • Castro R.
        • Loscalzo J.
        Epigenetic modifications: basic mechanisms and role in cardiovascular disease.
        Circulation. 2011; 123: 2145-2156
        • Bergman Y.
        • Cedar H.
        DNA methylation dynamics in health and disease.
        Nat Struct Mol Biol. 2013; 20: 274-281
        • Zhu J.K.
        Active DNA demethylation mediated by DNA glycosylases.
        Annu Rev Genet. 2009; 43: 143-166
        • Wu H.
        • Zhang Y.
        Reversing DNA methylation: mechanisms, genomics, and biological functions.
        Cell. 2014; 156: 45-68
        • Du J.
        • Johnson L.M.
        • Jacobsen S.E.
        • Patel D.J.
        DNA methylation pathways and their crosstalk with histone methylation.
        Nat Rev Mol Cell Biol. 2015; 16: 519-532
        • Gigek C.O.
        • Chen E.S.
        • Smith M.A.
        Methyl-CpG-Binding Protein (MBD) family: epigenomic read-outs functions and roles in tumorigenesis and psychiatric diseases.
        J Cell Biochem. 2016; 117: 29-38
        • Kowluru R.A.
        Mitochondrial stability in diabetic retinopathy: lessons learned from epigenetics.
        Diabetes. 2019; 68: 241-247
        • Martin C.
        • Zhang Y.
        The diverse functions of histone lysine methylation.
        Nat Rev Mol Cell Biol. 2005; 6: 838-849
        • Black J.C.
        • Van Rechem C.
        • Whetstine J.R.
        Histone lysine methylation dynamics: establishment, regulation, and biological impact.
        Mol Cell. 2012; 48: 491-507
        • Strahl B.D.
        • Allis C.D.
        The language of covalent histone modifications.
        Nature. 2000; 403: 41-45
        • Vaissiere T.
        • Sawan C.
        • Herceg Z.
        Epigenetic interplay between histone modifications and DNA methylation in gene silencing.
        Mutat Res. 2008; 659: 40-48
        • Xu Y.M.
        • Du J.Y.
        • Lau A.T.
        Posttranslational modifications of human histone H3: an update.
        Proteomics. 2014; 14: 2047-2060
        • Taverna S.D.
        • Li H.
        • Ruthenburg A.J.
        • Allis C.D.
        • Patel D.J.
        How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.
        Nat Struct Mol Biol. 2007; 14: 1025-1040
        • Borck P.C.
        • Guo L.W.
        • Plutzky J.
        BET epigenetic reader proteins in cardiovascular transcriptional programs.
        Circ Res. 2020; 126: 1190-1208
        • Khalil A.M.
        • Guttman M.
        • Huarte M.
        • Garber M.
        • Raj A.
        • Rivea Morales D.
        • et al.
        Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression.
        Proc Natl Acad Sci. 2009; 106: 11667-11672
        • De Paepe B.
        • Lefever S.
        • Mestdagh P.
        How long noncoding RNAs enforce their will on mitochondrial activity: regulation of mitochondrial respiration, reactive oxygen species production, apoptosis, and metabolic reprogramming in cancer.
        Curr Genet. 2018; 64: 163-172
        • Zhang L.
        • Dong Y.
        • Wang Y.
        • Gao J.
        • Lv J.
        • Sun J.
        • et al.
        Long non-coding RNAs in ocular diseases: new and potential therapeutic targets.
        FEBS J. 2019; 286: 2261-2272
        • Visone R.
        • Croce C.M.
        MiRNAs and cancer.
        Am J Pathol. 2009; 174: 1131-1138
        • Huang W.
        MicroRNAs: biomarkers, diagnostics, and therapeutics.
        Methods Mol Biol. 1617; 2017: 57-67
        • Adams B.D.
        • Parsons C.
        • Walker L.
        • Zhang W.C.
        • Slack F.J.
        Targeting noncoding RNAs in disease.
        J Clin Invest. 2017; 127: 761-771
        • Ma L.
        • Cao J.
        • Liu L.
        • Du Q.
        • Li Z.
        • Zou D.
        • et al.
        LncBook: a curated knowledgebase of human long non-coding RNAs.
        Nucleic Acids Res. 2019; 47: D128-d34
        • Cabili M.N.
        • Trapnell C.
        • Goff L.
        • Koziol M.
        • Tazon-Vega B.
        • Regev A.
        • et al.
        Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.
        Genes Dev. 2011; 25: 1915-1927
        • Sun L.
        • Lin J.D.
        Function and mechanism of long noncoding RNAs in adipocyte biology.
        Diabetes. 2019; 68: 887-896
        • Gordon A.D.
        • Biswas S.
        • Feng B.
        • Chakrabarti S.
        MALAT1: a regulator of inflammatory cytokines in diabetic complications.
        Endocrinol Diabetes Metab. 2018; 1e00010-e
        • Chen S.
        • Zhong H.
        • Wang Y.
        • Wang Z.
        • Liang X.
        • Li S.
        • et al.
        The clinical significance of long non-coding RNA ANRIL level in diabetic retinopathy.
        Acta Diabetol. 2020; 57: 409-418
        • Radhakrishnan R.
        • Kowluru R.A.
        Long noncoding RNA MALAT1 and regulation of the antioxidant defense system in diabetic retinopathy.
        Diabetes. 2021; 70: 227-239
        • Boon R.A.
        • Jaé N.
        • Holdt L.
        • Dimmeler S.
        Long noncoding RNAs: from clinical genetics to therapeutic targets?.
        J Am Coll Cardiol. 2016; 67: 1214-1226
        • Leung A.
        • Natarajan R.
        Long noncoding RNAs in diabetes and diabetic complications.
        Antioxid Redox Signal. 2018; 29: 1064-1073
        • Molina-Serrano D.
        • Schiza V.
        • Kirmizis A.
        Cross-talk among epigenetic modifications: lessons from histone arginine methylation.
        Biochem Soc Trans. 2013; 41: 751-759
        • Ling C.
        • Groop L.
        Epigenetics: a molecular link between environmental factors and type 2 diabetes.
        Diabetes. 2009; 58: 2718-2725
        • Bansal A.
        • Pinney S.E.
        DNA methylation and its role in the pathogenesis of diabetes.
        Pediatr Diabetes. 2017; 18: 167-177
        • Tremblay J.
        • Hamet P.
        Environmental and genetic contributions to diabetes.
        Metabolism. 2019; 100s153952
        • Reddy M.A.
        • Zhang E.
        • Natarajan R.
        Epigenetic mechanisms in diabetic complications and metabolic memory.
        Diabetologia. 2015; 58: 443-455
        • Chen Z.
        • Miao F.
        • Paterson A.D.
        • Lachin J.M.
        • Zhang L.
        • Schones D.E.
        • et al.
        Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort.
        Proc Acad Natl Sci. 2016; 113: E3002-E3011
        • Kikkawa R.
        • Koya D.
        • Haneda M.
        Progression of diabetic nephropathy.
        Am J Kidney Dis. 2003; 43: S19-S21
        • Maghbooli Z.
        • Larijani B.
        • Emamgholipour S.
        • Amini M.
        • Keshtkar A.
        • Pasalar P.
        Aberrant DNA methylation patterns in diabetic nephropathy.
        J Diabetes Metab Disord. 2014; 13: 69
        • Xu L.
        • Natarajan R.
        • Chen Z.
        Epigenetic risk profile of diabetic kidney disease in high-risk populations.
        Curr Diab Rep. 2019; 19: 9
        • Keating S.T.
        • van Diepen J.A.
        • Riksen N.P.
        • El-Osta A.
        Epigenetics in diabetic nephropathy, immunity and metabolism.
        Diabetologia. 2018; 61: 6-20
        • Denby L.
        • Ramdas V.
        • McBride M.W.
        • Wang J.
        • Robinson H.
        • McClure J.
        • et al.
        miR-21 and miR-214 are consistently modulated during renal injury in rodent models.
        The Am J Pathol. 2011; 179: 661-672
        • Kato M.
        Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease.
        Kidney Res Clin Pract. 2018; 37: 197-209
        • Kato M.
        • Natarajan R.
        Epigenetics and epigenomics in diabetic kidney disease and metabolic memory.
        Nat Rev Nephrol. 2019; 15: 327-345
        • Lv J.
        • Wu Y.
        • Mai Y.
        • Bu S.
        Noncoding RNAs in diabetic nephropathy: pathogenesis, biomarkers, and therapy.
        J Diabetes Res. 2020; 2020 (3960857-)
        • Tanwar V.S.
        • Reddy M.A.
        • Natarajan R.
        Emerging role of long non-coding RNAs in diabetic vascular complications.
        Front Endocrinol (Lausanne). 2021; 12 (665811-)
        • Pop-Busui R.
        • Boulton A.J.
        • Feldman E.L.
        • Bril V.
        • Freeman R.
        • Malik R.A.
        • et al.
        Diabetic neuropathy: a position statement by the American Diabetes Association.
        Diabetes Care. 2017; 40: 136-154
        • Zhang H.H.
        • Han X.
        • Wang M.
        • Hu Q.
        • Li S.
        • Wang M.
        • et al.
        The association between genomic DNA methylation and diabetic peripheral neuropathy in patients with Type 2 diabetes mellitus.
        J Diabetes Res. 2019; 2019: 2494057
        • Hur J.
        • O’Brien P.D.
        • Nair V.
        • Hinder L.M.
        • McGregor B.A.
        • Jagadish H.V.
        • et al.
        Transcriptional networks of murine diabetic peripheral neuropathy and nephropathy: common and distinct gene expression patterns.
        Diabetologia. 2016; 59: 1297-1306
        • Simeoli R.
        • Fierabracci A.
        Insights into the role of MicroRNAs in the onset and development of diabetic neuropathy.
        Int J Mol Sci. 2019; 20
        • Ciccacci C.
        • Morganti R.
        • Di Fusco D.
        • D’Amato C.
        • Cacciotti L.
        • Greco C.
        • et al.
        Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes.
        Acta Diabetol. 2014; 51: 663-671
        • Li Y.B.
        • Wu Q.
        • Liu J.
        • Fan Y.Z.
        • Yu K.F.
        • Cai Y.
        miR-199a-3p is involved in the pathogenesis and progression of diabetic neuropathy through downregulation of SerpinE2.
        Mol Med Rep. 2017; 16: 2417-2424
        • Luo L.
        • Ji L.D.
        • Cai J.J.
        • Feng M.
        • Zhou M.
        • Hu S.P.
        • et al.
        Microarray analysis of long noncoding RNAs in female diabetic peripheral neuropathy patients. Cellular physiology and biochemistry.
        Int J Exp Cell Physiol. 2018; 46: 1209-1217
        • Kowluru R.A.
        • Mishra M.
        Oxidative stress, mitochondrial damage and diabetic retinopathy.
        Biochim Bophys Acta. 2015; 1852: 2474-2483
        • Kowluru R.A.
        • Santos J.M.
        • Mishra M.
        Epigenetic modifications and diabetic retinopathy.
        Biomed Res Int. 2013; 2013: 635284
        • Sahajpal N.
        • Kowluru A.
        • Kowluru R.A.
        The regulatory role of Rac1, a small molecular weight GTPase, in the development of diabetic retinopathy.
        J Clin Med. 2019; 8
        • Kowluru R.A.
        • Mishra M.
        Therapeutic targets for altering mitochondrial dysfunction associated with diabetic retinopathy.
        Expert Opin Ther Targets. 2018; 22: 233-245
        • Kowluru R.A.
        • Mishra M.
        Regulation of matrix metalloproteinase in the pathogenesis of diabetic retinopathy.
        Prog Mol Biol Transl Sci. 2017; 148: 67-85
        • Donaghue K.C.
        • Margan S.H.
        • Chan A.K.
        • Holloway B.
        • Silink M.
        • Rangel T.
        • et al.
        The association of aldose reductase gene (AKR1B1) polymorphisms with diabetic neuropathy in adolescents.
        Diabet Med. 2005; 22: 1315-1320
        • Kitada M.
        • Zhang Z.
        • Mima A.
        • King G.L.
        Molecular mechanisms of diabetic vascular complications.
        J Diabetes Invest. 2010; 1: 77-89
        • Santos J.M.
        • Mohammad G.
        • Zhong Q.
        • Kowluru R.A.
        Diabetic retinopathy, superoxide damage and antioxidant.
        Curr Pharm Biotechnol. 2011; 12: 352-361
        • Ma J.
        • Li Y.
        • Zhou F.
        • Xu X.
        • Guo G.
        • Qu Y.
        Meta-analysis of association between the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 gene and diabetic retinopathy in Caucasians and Asians.
        Mol Vis. 2012; 18: 2352-2360
        • Cabrera A.P.
        • Monickaraj F.
        • Rangasamy S.
        • Hobbs S.
        • McGuire P.
        • Das A.
        Do genomic factors play a role in diabetic retinopathy?.
        J Clin Med. 2020; 9
        • Pollack S.
        • Igo Jr., R.P.
        • Jensen R.A.
        • Christiansen M.
        • Li X.
        • Cheng C.Y.
        • et al.
        Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control.
        Diabetes. 2019; 68: 441-456
        • Kowluru R.A.
        • Shan Y.
        • Mishra M.
        Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy.
        Lab Investig. 2016; 96: 1040-1049
        • Mishra M.
        • Kowluru R.A.
        DNA methylation-a potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy.
        Mol Neurobiol. 2019; 56: 88-101
        • Holliday R.
        • Grigg G.W.
        DNA methylation and mutation.
        Mutat Res. 1993; 285: 61-67
        • Tewari S.
        • Zhong Q.
        • Santos J.M.
        • Kowluru R.A.
        Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy.
        Invest Ophtahlmol Vis Sci. 2012; 53: 4881-4888
        • Kowluru R.A.
        • Mohammad G.
        Epigenetics and mitochondrial stability in the metabolic memory phenomenon associated with continued progression of diabetic retinopathy.
        Sci Rep. 2020; 10: 6655
        • Duraisamy A.J.
        • Mishra M.
        • Kowluru A.
        • Kowluru R.A.
        Epigenetics and regulation of oxidative stress in diabetic retinopathy.
        Invest Ophtahlmol Vis Sci. 2018; 59: 4831-4840
        • Kowluru R.A.
        • Radhakrishnan R.
        • Mohammad G.
        Diabetic retinopathy and epigenetic modifications: role of histone methylation and DNA methylation.
        Sci Rep. 2021; 1114097
        • Duraisamy A.J.
        • Radhakrishnan R.
        • Seyoum B.
        • Abrams G.W.
        • Kowluru R.A.
        Epigenetic modifications in peripheral blood as potential noninvasive biomarker of diabetic retinopathy.
        Transl Vis Sci Technol. 2019; 8: 43
        • Agardh E.
        • Lundstig A.
        • Perfilyev A.
        • Volkov P.
        • Freiburghaus T.
        • Lindholm E.
        • et al.
        Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy.
        BMC Med. 2015; 13: 182
        • Syreeni A.
        • El-Osta A.
        • Forsblom C.
        • Sandholm N.
        • Parkkonen M.
        • Tarnow L.
        • et al.
        Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes.
        Diabetes. 2011; 60: 3073-3080
        • Zhong Q.
        • Kowluru R.A.
        Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy.
        Diabetes. 2011; 60: 1304-1313
        • Mishra M.
        • Zhong Q.
        • Kowluru R.A.
        Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression.
        Free Radic Biol Med. 2014; 75: 129-139
        • Mishra M.
        • Zhong Q.
        • Kowluru R.A.
        Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy.
        Invest Ophtahlmol Vis Sci. 2014; 55: 7256-7265
        • Duraisamy A.J.
        • Mishra M.
        • Kowluru R.A.
        Crosstalk between histone and DNA methylation in regulation of retinal matrix metalloproteinase-9 in diabetes.
        Invest Ophtahlmol Vis Sci. 2017; 58: 6440-6448
        • Zhong Q.
        • Kowluru R.A.
        Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon.
        J Cell Biochem. 2010; 110: 1306-1313
        • Kowluru R.A.
        • Santos J.M.
        • Zhong Q.
        Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy.
        Invest Ophtahlmol Vis Sci. 2014; 55: 5653-5660
        • Mishra M.
        • Duraisamy A.J.
        • Bhattacharjee S.
        • Kowluru R.A.
        Adaptor protein p66Shc: a link between cytosolic and mitochondrial dysfunction in the development of diabetic retinopathy.
        Antioxid Redox Signal. 2019; 30: 1621-1634
        • Perrone L.
        • Devi T.S.
        • Hosoya K.
        • Terasaki T.
        • Singh L.P.
        Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions.
        J Cell Physiol. 2009; 221: 262-272
        • Zhong Q.
        • Kowluru R.A.
        Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy.
        Diabetes. 2013; 62: 2559-2568
        • Estève P.O.
        • Chin H.G.
        • Benner J.
        • Feehery G.R.
        • Samaranayake M.
        • Horwitz G.A.
        • et al.
        Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells.
        Proc Natl Acad Sci. 2009; 106: 5076-5081
        • Platania C.B.M.
        • Maisto R.
        • Trotta M.C.
        • D’Amico M.
        • Rossi S.
        • Gesualdo C.
        • et al.
        Retinal and circulating miRNA expression patterns in diabetic retinopathy: an in silico and in vivo approach.
        Brit J Pharmacol. 2019; 176: 2179-2194
        • Chen Q.
        • Qiu F.
        • Zhou K.
        • Matlock H.G.
        • Takahashi Y.
        • Rajala R.V.S.
        • et al.
        Pathogenic role of microRNA-21 in diabetic retinopathy through downregulation of PPARα.
        Diabetes. 2017; 66: 1671-1682
        • Shafabakhsh R.
        • Aghadavod E.
        • Mobini M.
        • Heidari-Soureshjani R.
        • Asemi Z.
        Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy.
        J Cell Physiol. 2019; 234: 7781-7787
        • Qing S.
        • Yuan S.
        • Yun C.
        • Hui H.
        • Mao P.
        • Wen F.
        • et al.
        Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy.
        Cell Physiol Biochem. 2014; 34: 1733-1740
        • Mastropasqua R.
        • Toto L.
        • Cipollone F.
        • Santovito D.
        • Carpineto P.
        • Mastropasqua L.
        Role of microRNAs in the modulation of diabetic retinopathy.
        Prog Retin Eye Res. 2014; 43C: 92-107
        • Biswas S.
        • Sarabusky M.
        • Chakrabarti S.
        Diabetic retinopathy, lncRNAs, and inflammation: a dynamic, interconnected network.
        J Clin Med. 2019; 8: 1033
        • Thomas A.A.
        • Feng B.
        • Chakrabarti S.
        ANRIL: a regulator of VEGF in diabetic retinopathy.
        Invest Ophtahlmol Vis Sci. 2017; 58: 470-480
        • Shao K.
        • Xi L.
        • Cang Z.
        • Chen C.
        • Huang S.
        Knockdown of NEAT1 exerts suppressive effects on diabetic retinopathy progression via inactivating TGF-β1 and VEGF signaling pathways.
        J Cell Physiol. 2020; 235: 9361-9369
        • Sun Y.
        • Liu Y.X.
        LncRNA HOTTIP improves diabetic retinopathy by regulating the p38-MAPK pathway.
        Eur Rev Med Pharmacol Sci. 2018; 22: 2941-2948
        • Biswas S.
        • Feng B.
        • Chen S.
        • Liu J.
        • Aref-Eshghi E.
        • Gonder J.
        • et al.
        The long non-coding RNA HOTAIR is a critical epigenetic mediator of angiogenesis in diabetic retinopathy.
        Invest Ophtahlmol Vis Sci. 2021; 62: 20
        • Keating S.T.
        • Plutzky J.
        • El-Osta A.
        Epigenetic changes in diabetes and cardiovascular risk.
        Circ Res. 2016; 118: 1706-1722
        • den Dekker A.
        • Davis F.M.
        • Kunkel S.L.
        • Gallagher K.A.
        Targeting epigenetic mechanisms in diabetic wound healing.
        Transl Res. 2019; 204: 39-50
        • Pant T.
        • Dhanasekaran A.
        • Fang J.
        • Bai X.
        • Bosnjak Z.J.
        • Liang M.
        • et al.
        Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy.
        BMC Cardiovasc Disord. 2018; 18: 197
        • Wang W.
        • Yang C.
        • Wang X.Y.
        • Zhou L.Y.
        • Lao G.J.
        • Liu D.
        • et al.
        MicroRNA-129 and -335 promote diabetic wound healing by inhibiting Sp1-mediated MMP-9 expression.
        Diabetes. 2018; 67: 1627-1638
        • Pasculli B.
        • Barbano R.
        • Parrella P.
        Epigenetics of breast cancer: biology and clinical implication in the era of precision medicine.
        Semin Cancer Biol. 2018; 51: 22-35
        • Bansal A.
        • Pinney S.E.
        DNA methylation and its role in the pathogenesis of diabetes.
        Pediatr Diabetes. 2017; 18: 167-177
        • Nunes S.P.
        • Henrique R.
        • Jerónimo C.
        • Paramio J.M.
        DNA methylation as a therapeutic target for bladder cancer.
        Cells. 2020; 9
        • Castillo-Aguilera O.
        • Depreux P.
        • Halby L.
        • Arimondo P.B.
        • Goossens L.
        DNA methylation targeting: the DNMT/HMT crosstalk challenge.
        Biomolecules. 2017; 7
        • Khor TO
        • Huang Y.
        • Wu T.Y.
        • Shu L.
        • Lee J.
        • Kong A.N.
        Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation.
        Biochem Pharmacol. 2011; 82: 1073-1078
        • Zhang C.
        • Su Z.Y.
        • Khor TO
        • Shu L.
        • Kong A.N.
        Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation.
        Biochem Pharmacol. 2013; 85: 1398-1404
        • Duthie S.J.
        Epigenetic modifications and human pathologies: cancer and CVD.
        Proc Nutr Soc. 2011; 70: 47-56
        • Bondarev A.D.
        • Attwood M.M.
        • Jonsson J.
        • Chubarev V.N.
        • Tarasov V.V.
        • Schiöth H.B.
        Recent developments of HDAC inhibitors: emerging indications and novel molecules.
        Br J Clin Pharmacol. 2021; (May 10 (Online ahead of print))
        • Lakshmaiah K.C.
        • Jacob L.A.
        • Aparna S.
        • Lokanatha D.
        • Saldanha S.C.
        Epigenetic therapy of cancer with histone deacetylase inhibitors.
        J Cancer Res Ther. 2014; 10: 469-478
        • Zhou L.Y.
        • Qin Z.
        • Zhu Y.H.
        • He Z.Y.
        • Xu T.
        Current RNA-based therapeutics in clinical trials.
        Curr Gene Ther. 2019; 19: 172-196