Advertisement
Research Article| Volume 128, 154958, March 2022

Among simple non-invasive scores, Pro-C3 and ADAPT best exclude advanced fibrosis in Asian patients with MAFLD

Published:December 24, 2021DOI:https://doi.org/10.1016/j.metabol.2021.154958

      Highlights

      • The N-terminal propeptide of type 3 collagen can be used for the staging fibrosis.
      • The ADAPT score has better diagnostic performance for identifying advanced fibrosis.
      • The ADAPT score can be used as new noninvasive tests for diagnosing advanced fibrosis.

      Abstract

      Background

      With metabolic dysfunction-associated fatty liver disease (MAFLD) incidence and prevalence increasing, it is necessary to identify patients with advanced fibrosis (F3-F4 stages). We evaluated the performance of new biomarkers and algorithms for diagnosing advanced fibrosis in an Asian population.

      Methods

      Data from two Asian cohorts (including 851 biopsy-proven MAFLD [578 from Wenzhou, 273 from Hong Kong]) were studied. The association between N-terminal propeptide of type 3 collagen (PRO-C3) and the histologic stage of liver fibrosis was analyzed by multivariable linear regression. The area under the receiver operating characteristic curve (AUROC) was used to test the diagnostic performance of serum PRO-C3 and the ADAPT score for advanced fibrosis and compared them to other established non-invasive tests.

      Results

      Serum PRO-C3 levels increased progressively across liver fibrosis stages and correlated with advanced fibrosis (P < 0.001). The ADAPT score had an AUROC of 0.865 (95% confidence interval 0.829–0.901) for advanced fibrosis; the accuracy, sensitivity and negative predictive values were 81.4%, 82.2% and 96.1%, respectively. This result was better compared to that of PRO-C3 alone or other non-invasive fibrosis biomarkers (aspartate aminotransferase-to-platelet ratio index, Fibrosis-4, BARD, and NAFLD fibrosis score). In subgroup analyses (including sex, age, diabetes, NAFLD activity score, body mass index or serum alanine aminotransferase levels), the ADAPT score had good diagnostic performance.

      Conclusion

      PRO-C3 and the ADAPT score reliably exclude advanced fibrosis in MAFLD patients and reduce the need for liver biopsy.

      Abbreviations:

      ALT (alanine aminotransferase), AST (aspartate aminotransferase), AAR (aspartate aminotransferase to alanine aminotransferase ratio), APRI (aspartate aminotransferase-platelet ratio index), AUROC (area under the receiver operating characteristic curve), BMI (body mass index), CI (95% confidence interval), DCA (decision curve analysis), FIB-4 (fibrosis-4), MAFLD (metabolic dysfunction-associated fatty liver disease), NAFLD (nonalcoholic fatty liver disease), NFS (NAFLD fibrosis score), NPV (negative predictive value), OR (odds ratio), PRO-C3 (N-terminal propeptide of type 3 collagen), PPV (positive predictive value)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Liu J.
        • Ayada I.
        • Zhang X.
        • Wang L.
        • Li Y.
        • Wen T.
        • et al.
        Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults.
        Clin Gastroenterol Hepatol. 2021; (Online ahead of print)https://doi.org/10.1016/j.cgh.2021.02.030
        • Eslam M.
        • Sarin S.K.
        • Wong V.W.
        • Fan J.G.
        • Kawaguchi T.
        • Ahn S.H.
        • et al.
        The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease.
        Hepatol Int. 2020; 14: 889-919
        • Zheng K.I.
        • Fan J.G.
        • Shi J.P.
        • Wong V.W.
        • Eslam M.
        • George J.
        • et al.
        From NAFLD to MAFLD: a “redefining” moment for fatty liver disease.
        Chin Med J (Engl). 2020; 133: 2271-2273
        • Estes C.
        • Anstee Q.M.
        • Arias-Loste M.T.
        • Bantel H.
        • Bellentani S.
        • Caballeria J.
        • et al.
        Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030.
        J Hepatol. 2018; 69: 896-904
        • Kaya E.
        • Yılmaz Y.
        Non-alcoholic fatty liver disease: a growing public health problem in Turkey.
        Turk J Gastroenterol. 2019; 30: 865-871
        • Zheng K.I.
        • Eslam M.
        • George J.
        • Zheng M.H.
        When a new definition overhauls perceptions of MAFLD related cirrhosis care.
        Hepatobiliary Surg Nutr. 2020; 9: 801-804
        • Bertot L.C.
        • Jeffrey G.P.
        • Wallace M.
        • MacQuillan G.
        • Garas G.
        • Ching H.L.
        • et al.
        Nonalcoholic fatty liver disease-related cirrhosis is commonly unrecognized and associated with hepatocellular carcinoma.
        Hepatol Commun. 2017; 1: 53-60
        • Fouad Y.
        • Gomaa A.
        • Semida N.
        • Ghany W.A.
        • Attia D.
        Change from NAFLD to MAFLD increases the awareness of fatty liver disease in primary care physicians and specialists.
        J Hepatol. 2021; 74: 1254-1256
        • Méndez-Sánchez N.
        • Díaz-Orozco L.
        • Córdova-Gallardo J.
        Redefinition of fatty liver disease from NAFLD to MAFLD raised disease awareness: Mexican experience.
        J Hepatol. 2021; 75: 221-222
        • Ciardullo S.
        • Perseghin G.
        Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population.
        Liver Int. 2021; 41: 1290-1293
        • Sun D.Q.
        • Jin Y.
        • Wang T.Y.
        • Zheng K.I.
        • Rios R.S.
        • Zhang H.Y.
        • et al.
        MAFLD and risk of CKD.
        Metab Clin Exp. 2021; 115: 154433
        • Yamamura S.
        • Eslam M.
        • Kawaguchi T.
        • Tsutsumi T.
        • Nakano D.
        • Yoshinaga S.
        • et al.
        MAFLD identifies patients with significant hepatic fibrosis better than NAFLD.
        Liver Int. 2020; 40: 3018-3030
        • Zheng K.I.
        • Sun D.Q.
        • Jin Y.
        • Zhu P.W.
        • Zheng M.H.
        Clinical utility of the MAFLD definition.
        J Hepatol. 2021; 74: 989-991
        • Piscaglia F.
        • Svegliati-Baroni G.
        • Barchetti A.
        • Pecorelli A.
        • Marinelli S.
        • Tiribelli C.
        • et al.
        Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study.
        Hepatology (Baltimore, Md). 2016; 63: 827-838
        • Mittal S.
        • Sada Y.H.
        • El-Serag H.B.
        • Kanwal F.
        • Duan Z.
        • Temple S.
        • et al.
        Temporal trends of nonalcoholic fatty liver disease-related hepatocellular carcinoma in the veteran affairs population.
        Clin Gastroenterol Hepatol. 2015; 13: 594-601.e1
        • Vilar-Gomez E.
        • Calzadilla-Bertot L.
        • Wai-Sun Wong V.
        • Castellanos M.
        • Aller-de la Fuente R.
        • Metwally M.
        • et al.
        Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study.
        Gastroenterology. 2018; 155: 443-457.e17
        • Mofrad P.
        • Contos M.J.
        • Haque M.
        • Sargeant C.
        • Fisher R.A.
        • Luketic V.A.
        • et al.
        Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values.
        Hepatology (Baltimore, Md). 2003; 37: 1286-1292
        • Maximos M.
        • Bril F.
        • Portillo Sanchez P.
        • Lomonaco R.
        • Orsak B.
        • Biernacki D.
        • et al.
        The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease.
        Hepatology (Baltimore, Md). 2015; 61: 153-160
        • Ratziu V.
        • Charlotte F.
        • Heurtier A.
        • Gombert S.
        • Giral P.
        • Bruckert E.
        • et al.
        Sampling variability of liver biopsy in nonalcoholic fatty liver disease.
        Gastroenterology. 2005; 128: 1898-1906
        • Castera L.
        • Friedrich-Rust M.
        • Loomba R.
        Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease.
        Gastroenterology. 2019; 156: 1264-1281.e4
        • Vilar-Gomez E.
        • Chalasani N.
        Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers.
        J Hepatol. 2018; 68: 305-315
        • Wai C.T.
        • Greenson J.K.
        • Fontana R.J.
        • Kalbfleisch J.D.
        • Marrero J.A.
        • Conjeevaram H.S.
        • et al.
        A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C.
        Hepatology (Baltimore, Md). 2003; 38: 518-526
        • Nielsen M.J.
        • Veidal S.S.
        • Karsdal M.A.
        • Ørsnes-Leeming D.J.
        • Vainer B.
        • Gardner S.D.
        • et al.
        Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C.
        Liver Int. 2015; 35: 429-437
        • Daniels S.J.
        • Leeming D.J.
        • Eslam M.
        • Hashem A.M.
        • Nielsen M.J.
        • Krag A.
        • et al.
        ADAPT: an algorithm incorporating PRO-C3 accurately identifies patients with NAFLD and advanced fibrosis.
        Hepatology (Baltimore, Md). 2019; 69: 1075-1086
        • Eslam M.
        • Wong G.L.
        • Hashem A.M.
        • Chan H.L.
        • Nielsen M.J.
        • Leeming D.J.
        • et al.
        A sequential algorithm combining ADAPT and liver stiffness can stage metabolic-associated fatty liver disease in hospital-based and primary care patients.
        Am J Gastroenterol. 2021; 116: 984-993
        • Eslam M.
        • Sanyal A.J.
        • George J.
        MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease.
        Gastroenterology. 2020; 158: 1999-2014.e1
        • Eslam M.
        • Newsome P.N.
        • Sarin S.K.
        • Anstee Q.M.
        • Targher G.
        • Romero-Gomez M.
        • et al.
        A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement.
        J Hepatol. 2020; 73: 202-209
      1. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease.
        J Hepatol. 2016; 64: 1388-1402
        • Fukusato T.
        • Fukushima J.
        • Shiga J.
        • Takahashi Y.
        • Nakano T.
        • Maeyama S.
        • et al.
        Interobserver variation in the histopathological assessment of nonalcoholic steatohepatitis.
        Hepatol Res. 2005; 33: 122-127
        • Younossi Z.M.
        • Gramlich T.
        • Liu Y.C.
        • Matteoni C.
        • Petrelli M.
        • Goldblum J.
        • et al.
        Nonalcoholic fatty liver disease: assessment of variability in pathologic interpretations.
        Mod Pathol. 1998; 11: 560-565
        • Kleiner D.E.
        • Brunt E.M.
        • Van Natta M.
        • Behling C.
        • Contos M.J.
        • Cummings O.W.
        • et al.
        Design and validation of a histological scoring system for nonalcoholic fatty liver disease.
        Hepatology (Baltimore, Md). 2005; 41: 1313-1321
        • Shah A.G.
        • Lydecker A.
        • Murray K.
        • Tetri B.N.
        • Contos M.J.
        • Sanyal A.J.
        Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease.
        Clin Gastroenterol Hepatol. 2009; 7: 1104-1112
        • Angulo P.
        • Hui J.M.
        • Marchesini G.
        • Bugianesi E.
        • George J.
        • Farrell G.C.
        • et al.
        The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD.
        Hepatology (Baltimore, Md). 2007; 45: 846-854
        • Sterling R.K.
        • Lissen E.
        • Clumeck N.
        • Sola R.
        • Correa M.C.
        • Montaner J.
        • et al.
        Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection.
        Hepatology (Baltimore, Md). 2006; 43: 1317-1325
        • Angulo P.
        • Kleiner D.E.
        • Dam-Larsen S.
        • Adams L.A.
        • Bjornsson E.S.
        • Charatcharoenwitthaya P.
        • et al.
        Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease.
        Gastroenterology. 2015; 149: 389-397.e10