Advertisement

Adipose tissue aging: An update on mechanisms and therapeutic strategies

  • Zhaohua Cai
    Affiliations
    Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
    Search for articles by this author
  • Ben He
    Correspondence
    Corresponding author at: Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, 241 Huaihai West Road, Shanghai 200030, China.
    Affiliations
    Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
    Search for articles by this author
Published:October 03, 2022DOI:https://doi.org/10.1016/j.metabol.2022.155328

      Highlights

      • Adipose tissue is a biological driver of aging and age-related diseases.
      • n addition to dysfunction in aged adipocytes, adipose tissue aging is strongly associated with chronic inflammation, immune cell remodeling, cellular senescence, adipose tissue fibrosis, as well as increased dysfunction of sympathetic nervous system within the adipose tissue.
      • Counteracting the adipose tissue aging delays or even reverses systemic age-related disorders.

      Abstract

      Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. World population ageing: 1950-2050.
        (Accessed Dec 2020)
        • World Health Organization
        Ageing.
        • Lopez-Otin C.
        • Blasco M.A.
        • Partridge L.
        • Serrano M.
        • Kroemer G.
        The hallmarks of aging.
        Cell. 2013; 153: 1194-1217
        • Aunan J.R.
        • Watson M.M.
        • Hagland H.R.
        • Soreide K.
        Molecular and biological hallmarks of ageing.
        Br J Surg. 2016; 103: e29-e46
        • Tabula Muris Consortium
        A single-cell transcriptomic atlas characterizes ageing tissues in the mouse.
        Nature. 2020; 583: 590-595
        • Schaum N.
        • Lehallier B.
        • Hahn O.
        • Palovics R.
        • Hosseinzadeh S.
        • Lee S.E.
        • Sit R.
        • Lee D.P.
        • Losada P.M.
        • Zardeneta M.E.
        • Fehlmann T.
        • Webber J.T.
        • McGeever A.
        • Calcuttawala K.
        • Zhang H.
        • Berdnik D.
        • Mathur V.
        • Tan W.
        • Zee A.
        • Tan M.
        • Pisco A.O.
        • Karkanias J.
        • Neff N.F.
        • Keller A.
        • Darmanis S.
        • Quake S.R.
        • Wyss-Coray T.
        Ageing hallmarks exhibit organ-specific temporal signatures.
        Nature. 2020; 583: 596-602
        • Sakers A.
        • De Siqueira M.K.
        • Seale P.
        • Villanueva C.J.
        Adipose-tissue plasticity in health and disease.
        Cell. 2022; 185: 419-446
        • Rogers N.H.
        • Landa A.
        • Park S.
        • Smith R.G.
        Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue.
        Aging Cell. 2012; 11: 1074-1083
        • Scambi I.
        • Peroni D.
        • Nodari A.
        • Merigo F.
        • Benati D.
        • Boschi F.
        • Mannucci S.
        • Frontini A.
        • Visona S.
        • Sbarbati A.
        • Krampera M.
        • Galie M.
        The transcriptional profile of adipose-derived stromal cells (ASC) mirrors the whitening of adipose tissue with age.
        Eur J Cell Biol. 2022; 101151206
        • Kuk J.L.
        • Saunders T.J.
        • Davidson L.E.
        • Ross R.
        Age-related changes in total and regional fat distribution.
        Ageing Res Rev. 2009; 8: 339-348
        • Huffman D.M.
        • Barzilai N.
        Role of visceral adipose tissue in aging.
        Biochim Biophys Acta. 2009; 1790: 1117-1123
        • Smolander J.
        Effect of cold exposure on older humans.
        Int J Sports Med. 2002; 23: 86-92
        • Chen G.Y.
        • Nunez G.
        Sterile inflammation: sensing and reacting to damage.
        Nat Rev Immunol. 2010; 10: 826-837
        • Von Bank H.
        • Kirsh C.
        • Simcox J.
        Aging adipose: depot location dictates age-associated expansion and dysfunction.
        Ageing Res Rev. 2021; 67101259
        • Trim W.V.
        • Walhin J.P.
        • Koumanov F.
        • Bouloumie A.
        • Lindsay M.A.
        • Chen Y.C.
        • Travers R.L.
        • Turner J.E.
        • Thompson D.
        Divergent immunometabolic changes in adipose tissue and skeletal muscle with ageing in healthy humans.
        J Physiol. 2022; 600: 921-947
        • Barzilai N.
        • Banerjee S.
        • Hawkins M.
        • Chen W.
        • Rossetti L.
        Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat.
        J Clin Invest. 1998; 101: 1353-1361
        • Barzilai N.
        • Gupta G.
        Revisiting the role of fat mass in the life extension induced by caloric restriction.
        J Gerontol A Biol Sci Med Sci. 1999; 54 (B89-96; discussion B97-8)
        • Dorling J.L.
        • Ravussin E.
        • Redman L.M.
        • Bhapkar M.
        • Huffman K.M.
        • Racette S.B.
        • Das S.K.
        • Apolzan J.W.
        • Kraus W.E.
        • Hochsmann C.
        • Martin C.K.
        Effect of 2 years of calorie restriction on liver biomarkers: results from the CALERIE phase 2 randomized controlled trial.
        Eur J Nutr. 2021; 60: 1633-1643
        • Lopez-Otin C.
        • Galluzzi L.
        • Freije J.M.P.
        • Madeo F.
        • Kroemer G.
        Metabolic control of longevity.
        Cell. 2016; 166: 802-821
        • Peirce V.
        • Carobbio S.
        • Vidal-Puig A.
        The different shades of fat.
        Nature. 2014; 510: 76-83
        • Lee M.J.
        • Wu Y.
        • Fried S.K.
        Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications.
        Mol Aspects Med. 2013; 34: 1-11
        • Zwick R.K.
        • Guerrero-Juarez C.F.
        • Horsley V.
        • Plikus M.V.
        Anatomical, physiological, and functional diversity of adipose tissue.
        Cell Metab. 2018; 27: 68-83
        • Scherer P.E.
        Adipose tissue: from lipid storage compartment to endocrine organ.
        Diabetes. 2006; 55: 1537-1545
        • Scheja L.
        • Heeren J.
        The endocrine function of adipose tissues in health and cardiometabolic disease.
        Nat Rev Endocrinol. 2019; 15: 507-524
        • Rosen E.D.
        • Spiegelman B.M.
        What we talk about when we talk about fat.
        Cell. 2014; 156: 20-44
        • Liu X.M.
        • Chan H.C.
        • Ding G.L.
        • Cai J.
        • Song Y.
        • Wang T.T.
        • Zhang D.
        • Chen H.
        • Yu M.K.
        • Wu Y.T.
        • Qu F.
        • Liu Y.
        • Lu Y.C.
        • Adashi E.Y.
        • Sheng J.Z.
        • Huang H.F.
        FSH regulates fat accumulation and redistribution in aging through the Galphai/Ca(2+)/CREB pathway.
        Aging Cell. 2015; 14: 409-420
        • Muzumdar R.
        • Allison D.B.
        • Huffman D.M.
        • Ma X.
        • Atzmon G.
        • Einstein F.H.
        • Fishman S.
        • Poduval A.D.
        • McVei T.
        • Keith S.W.
        • Barzilai N.
        Visceral adipose tissue modulates mammalian longevity.
        Aging Cell. 2008; 7: 438-440
        • Ezure T.
        • Amano S.
        Influence of subcutaneous adipose tissue mass on dermal elasticity and sagging severity in lower cheek.
        Skin Res Technol. 2010; 16: 332-338
        • Mizukoshi K.
        • Kuribayashi M.
        • Hirayama K.
        • Yabuzaki J.
        • Kurosumi M.
        • Hamanaka Y.
        Examination of age-related changes of viscoelasticity in the dermis and subcutaneous fat layer using ultrasound elastography.
        Skin Res Technol. 2021; 27: 618-626
        • Ezure T.
        • Amano S.
        • Matsuzaki K.
        Infiltration of subcutaneous adipose layer into the dermal layer with aging.
        Skin Res Technol. 2022; 28: 311-316
        • Akima H.
        • Yoshiko A.
        • Hioki M.
        • Kanehira N.
        • Shimaoka K.
        • Koike T.
        • Sakakibara H.
        • Oshida Y.
        Skeletal muscle size is a major predictor of intramuscular fat content regardless of age.
        Eur J Appl Physiol. 2015; 115: 1627-1635
        • Hogrel J.Y.
        • Barnouin Y.
        • Azzabou N.
        • Butler-Browne G.
        • Voit T.
        • Moraux A.
        • Leroux G.
        • Behin A.
        • McPhee J.S.
        • Carlier P.G.
        NMR imaging estimates of muscle volume and intramuscular fat infiltration in the thigh: variations with muscle, gender, and age.
        Age (Dordr). 2015; 37: 9798
        • Pachon-Pena G.
        • Bredella M.A.
        Bone marrow adipose tissue in metabolic health.
        Trends Endocrinol Metab. 2022; 33: 401-408
        • Palmer A.K.
        • Jensen M.D.
        Metabolic changes in aging humans: current evidence and therapeutic strategies.
        J Clin Invest. 2022; 132
        • Zhang F.
        • Hao G.
        • Shao M.
        • Nham K.
        • An Y.
        • Wang Q.
        • Zhu Y.
        • Kusminski C.M.
        • Hassan G.
        • Gupta R.K.
        • Zhai Q.
        • Sun X.
        • Scherer P.E.
        • Oz O.K.
        An adipose tissue atlas: an image-guided identification of human-like BAT and Beige depots in rodents.
        Cell Metab. 2018; 27e3
        • Lidell M.E.
        • Betz M.J.
        • Dahlqvist Leinhard O.
        • Heglind M.
        • Elander L.
        • Slawik M.
        • Mussack T.
        • Nilsson D.
        • Romu T.
        • Nuutila P.
        • Virtanen K.A.
        • Beuschlein F.
        • Persson A.
        • Borga M.
        • Enerback S.
        Evidence for two types of brown adipose tissue in humans.
        Nat Med. 2013; 19: 631-634
        • Sidossis L.
        • Kajimura S.
        Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis.
        J Clin Invest. 2015; 125: 478-486
        • Ouellet V.
        • Routhier-Labadie A.
        • Bellemare W.
        • Lakhal-Chaieb L.
        • Turcotte E.
        • Carpentier A.C.
        • Richard D.
        Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans.
        J Clin Endocrinol Metab. 2011; 96: 192-199
        • Harms M.
        • Seale P.
        Brown and beige fat: development, function and therapeutic potential.
        Nat Med. 2013; 19: 1252-1263
        • Seale P.
        • Bjork B.
        • Yang W.
        • Kajimura S.
        • Chin S.
        • Kuang S.
        • Scime A.
        • Devarakonda S.
        • Conroe H.M.
        • Erdjument-Bromage H.
        • Tempst P.
        • Rudnicki M.A.
        • Beier D.R.
        • Spiegelman B.M.
        PRDM16 controls a brown fat/skeletal muscle switch.
        Nature. 2008; 454: 961-967
        • Lepper C.
        • Fan C.M.
        Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells.
        Genesis. 2010; 48: 424-436
        • Nedergaard J.
        • Golozoubova V.
        • Matthias A.
        • Asadi A.
        • Jacobsson A.
        • Cannon B.
        UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency.
        Biochim Biophys Acta. 2001; 1504: 82-106
        • Villarroya F.
        • Cereijo R.
        • Villarroya J.
        • Giralt M.
        Brown adipose tissue as a secretory organ.
        Nat Rev Endocrinol. 2017; 13: 26-35
        • Gaspar R.C.
        • Pauli J.R.
        • Shulman G.I.
        • Munoz V.R.
        An update on brown adipose tissue biology: a discussion of recent findings.
        Am J Physiol Endocrinol Metab. 2021; 320: E488-E495
        • Yang F.T.
        • Stanford K.I.
        Batokines: mediators of inter-tissue communication (a mini-review).
        Curr Obes Rep. 2022; 11: 1-9
        • Qing H.
        • Desrouleaux R.
        • Israni-Winger K.
        • Mineur Y.S.
        • Fogelman N.
        • Zhang C.
        • Rashed S.
        • Palm N.W.
        • Sinha R.
        • Picciotto M.R.
        • Perry R.J.
        • Wang A.
        Origin and function of stress-induced IL-6 in murine models.
        Cell. 2020; 182e14
        • Hondares E.
        • Iglesias R.
        • Giralt A.
        • Gonzalez F.J.
        • Giralt M.
        • Mampel T.
        • Villarroya F.
        Thermogenic activation induces FGF21 expression and release in brown adipose tissue.
        J Biol Chem. 2011; 286: 12983-12990
        • Becher T.
        • Palanisamy S.
        • Kramer D.J.
        • Eljalby M.
        • Marx S.J.
        • Wibmer A.G.
        • Butler S.D.
        • Jiang C.S.
        • Vaughan R.
        • Schoder H.
        • Mark A.
        • Cohen P.
        Brown adipose tissue is associated with cardiometabolic health.
        Nat Med. 2021; 27: 58-65
        • Herz C.T.
        • Kulterer O.C.
        • Prager M.
        • Schmoltzer C.
        • Langer F.B.
        • Prager G.
        • et al.
        Active Brown adipose tissue is associated with a healthier metabolic phenotype in obesity.
        Diabetes. 2021; : db210475
        • Wu J.
        • Bostrom P.
        • Sparks L.M.
        • Ye L.
        • Choi J.H.
        • Giang A.H.
        • Khandekar M.
        • Virtanen K.A.
        • Nuutila P.
        • Schaart G.
        • Huang K.
        • Tu H.
        • van Marken Lichtenbelt W.D.
        • Hoeks J.
        • Enerback S.
        • Schrauwen P.
        • Spiegelman B.M.
        Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.
        Cell. 2012; 150: 366-376
        • Long J.Z.
        • Svensson K.J.
        • Tsai L.
        • Zeng X.
        • Roh H.C.
        • Kong X.
        • Rao R.R.
        • Lou J.
        • Lokurkar I.
        • Baur W.
        • Castellot Jr., J.J.
        • Rosen E.D.
        • Spiegelman B.M.
        A smooth muscle-like origin for beige adipocytes.
        Cell Metab. 2014; 19: 810-820
        • Berry D.C.
        • Jiang Y.
        • Graff J.M.
        Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function.
        Nat Commun. 2016; 7: 10184
        • Oguri Y.
        • Shinoda K.
        • Kim H.
        • Alba D.L.
        • Bolus W.R.
        • Wang Q.
        • Brown Z.
        • Pradhan R.N.
        • Tajima K.
        • Yoneshiro T.
        • Ikeda K.
        • Chen Y.
        • Cheang R.T.
        • Tsujino K.
        • Kim C.R.
        • Greiner V.J.
        • Datta R.
        • Yang C.D.
        • Atabai K.
        • McManus M.T.
        • Koliwad S.K.
        • Spiegelman B.M.
        • Kajimura S.
        CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling.
        Cell. 2020; 182e20
        • Roh H.C.
        • Tsai L.T.Y.
        • Shao M.
        • Tenen D.
        • Shen Y.
        • Kumari M.
        • Lyubetskaya A.
        • Jacobs C.
        • Dawes B.
        • Gupta R.K.
        • Rosen E.D.
        Warming induces significant reprogramming of beige, but not Brown, adipocyte cellular identity.
        Cell Metab. 2018; 27e5
        • Liu X.
        • Wang S.
        • You Y.
        • Meng M.
        • Zheng Z.
        • Dong M.
        • Lin J.
        • Zhao Q.
        • Zhang C.
        • Yuan X.
        • Hu T.
        • Liu L.
        • Huang Y.
        • Zhang L.
        • Wang D.
        • Zhan J.
        • Jong Lee H.
        • Speakman J.R.
        • Jin W.
        Brown adipose tissue transplantation reverses obesity in Ob/Ob mice.
        Endocrinology. 2015; 156: 2461-2469
        • Min S.Y.
        • Kady J.
        • Nam M.
        • Rojas-Rodriguez R.
        • Berkenwald A.
        • Kim J.H.
        • Noh H.L.
        • Kim J.K.
        • Cooper M.P.
        • Fitzgibbons T.
        • Brehm M.A.
        • Corvera S.
        Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice.
        Nat Med. 2016; 22: 312-318
        • Chondronikola M.
        • Volpi E.
        • Borsheim E.
        • Porter C.
        • Saraf M.K.
        • Annamalai P.
        • Yfanti C.
        • Chao T.
        • Wong D.
        • Shinoda K.
        • Labbe S.M.
        • Hurren N.M.
        • Cesani F.
        • Kajimura S.
        • Sidossis L.S.
        Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans.
        Cell Metab. 2016; 23: 1200-1206
        • Burl R.B.
        • Ramseyer V.D.
        • Rondini E.A.
        • Pique-Regi R.
        • Lee Y.H.
        • Granneman J.G.
        Deconstructing adipogenesis induced by beta3-adrenergic receptor activation with single-cell expression profiling.
        Cell Metab. 2018; 28e4
        • Hill D.A.
        • Lim H.W.
        • Kim Y.H.
        • Ho W.Y.
        • Foong Y.H.
        • Nelson V.L.
        • Nguyen H.C.B.
        • Chegireddy K.
        • Kim J.
        • Habertheuer A.
        • Vallabhajosyula P.
        • Kambayashi T.
        • Won K.J.
        • Lazar M.A.
        Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue.
        Proc Natl Acad Sci U S A. 2018; 115: E5096-E5105
        • Jaitin D.A.
        • Adlung L.
        • Thaiss C.A.
        • Weiner A.
        • Li B.
        • Descamps H.
        • Lundgren P.
        • Bleriot C.
        • Liu Z.
        • Deczkowska A.
        • Keren-Shaul H.
        • David E.
        • Zmora N.
        • Eldar S.M.
        • Lubezky N.
        • Shibolet O.
        • Hill D.A.
        • Lazar M.A.
        • Colonna M.
        • Ginhoux F.
        • Shapiro H.
        • Elinav E.
        • Amit I.
        Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner.
        Cell. 2019; 178e14
        • Vijay J.
        • Gauthier M.F.
        • Biswell R.L.
        • Louiselle D.A.
        • Johnston J.J.
        • Cheung W.A.
        • Belden B.
        • Pramatarova A.
        • Biertho L.
        • Gibson M.
        • Simon M.M.
        • Djambazian H.
        • Staffa A.
        • Bourque G.
        • Laitinen A.
        • Nystedt J.
        • Vohl M.C.
        • Fraser J.D.
        • Pastinen T.
        • Tchernof A.
        • Grundberg E.
        Single-cell analysis of human adipose tissue identifies depot and disease specific cell types.
        Nat Metab. 2020; 2: 97-109
        • Weinstock A.
        • Brown E.J.
        • Garabedian M.L.
        • Pena S.
        • Sharma M.
        • Lafaille J.
        • Moore K.J.
        • Fisher E.A.
        Single-cell RNA sequencing of visceral adipose tissue leukocytes reveals that caloric restriction following obesity promotes the accumulation of a distinct macrophage population with features of phagocytic cells.
        Immunometabolism. 2019; 1
        • Rondini E.A.
        • Ramseyer V.D.
        • Burl R.B.
        • Pique-Regi R.
        • Granneman J.G.
        Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development.
        Mol Metab. 2021; 53101307
        • Harasymowicz N.S.
        • Rashidi N.
        • Savadipour A.
        • Wu C.L.
        • Tang R.
        • Bramley J.
        • Buchser W.
        • Guilak F.
        Single-cell RNA sequencing reveals the induction of novel myeloid and myeloid-associated cell populations in visceral fat with long-term obesity.
        FASEB J. 2021; 35e21417
        • Sun W.
        • Dong H.
        • Balaz M.
        • Slyper M.
        • Drokhlyansky E.
        • Colleluori G.
        • Giordano A.
        • Kovanicova Z.
        • Stefanicka P.
        • Balazova L.
        • Ding L.
        • Husted A.S.
        • Rudofsky G.
        • Ukropec J.
        • Cinti S.
        • Schwartz T.W.
        • Regev A.
        • Wolfrum C.
        snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis.
        Nature. 2020; 587: 98-102
        • Backdahl J.
        • Franzen L.
        • Massier L.
        • Li Q.
        • Jalkanen J.
        • Gao H.
        • Andersson A.
        • Bhalla N.
        • Thorell A.
        • Ryden M.
        • Stahl P.L.
        • Mejhert N.
        Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin.
        Cell Metab. 2021; 33e6
        • Emont M.P.
        • Jacobs C.
        • Essene A.L.
        • Pant D.
        • Tenen D.
        • Colleluori G.
        • Di Vincenzo A.
        • Jorgensen A.M.
        • Dashti H.
        • Stefek A.
        • McGonagle E.
        • Strobel S.
        • Laber S.
        • Agrawal S.
        • Westcott G.P.
        • Kar A.
        • Veregge M.L.
        • Gulko A.
        • Srinivasan H.
        • Kramer Z.
        • De Filippis E.
        • Merkel E.
        • Ducie J.
        • Boyd C.G.
        • Gourash W.
        • Courcoulas A.
        • Lin S.J.
        • Lee B.T.
        • Morris D.
        • Tobias A.
        • Khera A.V.
        • Claussnitzer M.
        • Pers T.H.
        • Giordano A.
        • Ashenberg O.
        • Regev A.
        • Tsai L.T.
        • Rosen E.D.
        A single-cell atlas of human and mouse white adipose tissue.
        Nature. 2022; 603: 926-933
        • Jiang H.
        • Ding X.
        • Cao Y.
        • Wang H.
        • Zeng W.
        Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue.
        Cell Metab. 2017; 26e3
        • Chi J.
        • Wu Z.
        • Choi C.H.J.
        • Nguyen L.
        • Tegegne S.
        • Ackerman S.E.
        • Crane A.
        • Marchildon F.
        • Tessier-Lavigne M.
        • Cohen P.
        Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density.
        Cell Metab. 2018; 27e3
        • Cao Y.
        • Wang H.
        • Zeng W.
        Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging.
        Protein Cell. 2018; 9: 527-539
        • Cao Y.
        • Wang H.
        • Wang Q.
        • Han X.
        • Zeng W.
        Three-dimensional volume fluorescence-imaging of vascular plasticity in adipose tissues.
        Mol Metab. 2018; 14: 71-81
        • Sarvari A.K.
        • Van Hauwaert E.L.
        • Markussen L.K.
        • Gammelmark E.
        • Marcher A.B.
        • Ebbesen M.F.
        • Nielsen R.
        • Brewer J.R.
        • Madsen J.G.S.
        • Mandrup S.
        Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution.
        Cell Metab. 2021; 33e5
        • Song A.
        • Dai W.
        • Jang M.J.
        • Medrano L.
        • Li Z.
        • Zhao H.
        • Shao M.
        • Tan J.
        • Li A.
        • Ning T.
        • Miller M.M.
        • Armstrong B.
        • Huss J.M.
        • Zhu Y.
        • Liu Y.
        • Gradinaru V.
        • Wu X.
        • Jiang L.
        • Scherer P.E.
        • Wang Q.A.
        Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue.
        J Clin Invest. 2020; 130: 247-257
        • Wang Q.A.
        • Tao C.
        • Gupta R.K.
        • Scherer P.E.
        Tracking adipogenesis during white adipose tissue development, expansion and regeneration.
        Nat Med. 2013; 19: 1338-1344
        • Kane H.
        • Lynch L.
        Innate immune control of adipose tissue homeostasis.
        Trends Immunol. 2019; 40: 857-872
        • Vohralik E.J.
        • Psaila A.M.
        • Knights A.J.
        • Quinlan K.G.R.
        EoTHINophils: eosinophils as key players in adipose tissue homeostasis.
        Clin Exp Pharmacol Physiol. 2020; 47: 1495-1505
        • Cao Y.
        Angiogenesis modulates adipogenesis and obesity.
        J Clin Invest. 2007; 117: 2362-2368
        • Cao Y.
        Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity.
        Cell Metab. 2013; 18: 478-489
        • Cao Y.
        Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases.
        Nat Rev Drug Discov. 2010; 9: 107-115
        • Tang W.
        • Zeve D.
        • Suh J.M.
        • Bosnakovski D.
        • Kyba M.
        • Hammer R.E.
        • Tallquist M.D.
        • Graff J.M.
        White fat progenitor cells reside in the adipose vasculature.
        Science. 2008; 322: 583-586
        • Vishvanath L.
        • MacPherson K.A.
        • Hepler C.
        • Wang Q.A.
        • Shao M.
        • Spurgin S.B.
        • Wang M.Y.
        • Kusminski C.M.
        • Morley T.S.
        • Gupta R.K.
        Pdgfrbeta+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice.
        Cell Metab. 2016; 23: 350-359
        • Sung H.K.
        • Doh K.O.
        • Son J.E.
        • Park J.G.
        • Bae Y.
        • Choi S.
        • Nelson S.M.
        • Cowling R.
        • Nagy K.
        • Michael I.P.
        • Koh G.Y.
        • Adamson S.L.
        • Pawson T.
        • Nagy A.
        Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis.
        Cell Metab. 2013; 17: 61-72
        • Elias I.
        • Franckhauser S.
        • Ferre T.
        • Vila L.
        • Tafuro S.
        • Munoz S.
        • Roca C.
        • Ramos D.
        • Pujol A.
        • Riu E.
        • Ruberte J.
        • Bosch F.
        Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance.
        Diabetes. 2012; 61: 1801-1813
        • Park J.
        • Kim M.
        • Sun K.
        • An Y.A.
        • Gu X.
        • Scherer P.E.
        VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements.
        Diabetes. 2017; 66: 1479-1490
        • Bachman E.S.
        • Dhillon H.
        • Zhang C.Y.
        • Cinti S.
        • Bianco A.C.
        • Kobilka B.K.
        • Lowell B.B.
        betaAR signaling required for diet-induced thermogenesis and obesity resistance.
        Science. 2002; 297: 843-845
        • Zeng W.
        • Pirzgalska R.M.
        • Pereira M.M.
        • Kubasova N.
        • Barateiro A.
        • Seixas E.
        • Lu Y.H.
        • Kozlova A.
        • Voss H.
        • Martins G.G.
        • Friedman J.M.
        • Domingos A.I.
        Sympathetic neuro-adipose connections mediate leptin-driven lipolysis.
        Cell. 2015; 163: 84-94
        • Madden K.S.
        Sympathetic neural-immune interactions regulate hematopoiesis, thermoregulation and inflammation in mammals.
        Dev Comp Immunol. 2017; 66: 92-97
        • Wang W.
        • Seale P.
        Control of brown and beige fat development.
        Nat Rev Mol Cell Biol. 2016; 17: 691-702
        • Collins S.
        • Cao W.
        • Robidoux J.
        Learning new tricks from old dogs: beta-adrenergic receptors teach new lessons on firing up adipose tissue metabolism.
        Mol Endocrinol. 2004; 18: 2123-2131
        • Seale P.
        • Conroe H.M.
        • Estall J.
        • Kajimura S.
        • Frontini A.
        • Ishibashi J.
        • Cohen P.
        • Cinti S.
        • Spiegelman B.M.
        Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice.
        J Clin Invest. 2011; 121: 96-105
        • Zeng X.
        • Ye M.
        • Resch J.M.
        • Jedrychowski M.P.
        • Hu B.
        • Lowell B.B.
        • Ginty D.D.
        • Spiegelman B.M.
        Innervation of thermogenic adipose tissue via a calsyntenin 3beta-S100b axis.
        Nature. 2019; 569: 229-235
        • Henriques F.
        • Bedard A.H.
        • Guilherme A.
        • Kelly M.
        • Chi J.
        • Zhang P.
        • Lifshitz L.M.
        • Bellve K.
        • Rowland L.A.
        • Yenilmez B.
        • Kumar S.
        • Wang Y.
        • Luban J.
        • Weinstein L.S.
        • Lin J.D.
        • Cohen P.
        • Czech M.P.
        Single-cell RNA profiling reveals adipocyte to macrophage signaling sufficient to enhance thermogenesis.
        Cell Rep. 2020; 32107998
        • Blaszkiewicz M.
        • Wood E.
        • Koizar S.
        • Willows J.
        • Anderson R.
        • Tseng Y.H.
        • Godwin J.
        • Townsend K.L.
        The involvement of neuroimmune cells in adipose innervation.
        Mol Med. 2020; 26: 126
        • Xie H.
        • Heier C.
        • Meng X.
        • Bakiri L.
        • Pototschnig I.
        • Tang Z.
        • Schauer S.
        • Baumgartner V.J.
        • Grabner G.F.
        • Schabbauer G.
        • Wolinski H.
        • Robertson G.R.
        • Hoefler G.
        • Zeng W.
        • Wagner E.F.
        • Schweiger M.
        • Zechner R.
        An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia.
        Proc Natl Acad Sci U S A. 2022; 119: 2022;119
        • Meng X.
        • Qian X.
        • Ding X.
        • Wang W.
        • Yin X.
        • Zhuang G.
        • Zeng W.
        Eosinophils regulate intra-adipose axonal plasticity.
        Proc Natl Acad Sci U S A. 2022; 119: 2022;119
        • Hu B.
        • Jin C.
        • Zeng X.
        • Resch J.M.
        • Jedrychowski M.P.
        • Yang Z.
        • Desai B.N.
        • Banks A.S.
        • Lowell B.B.
        • Mathis D.
        • Spiegelman B.M.
        Gammadelta T cells and adipocyte IL-17RC control fat innervation and thermogenesis.
        Nature. 2020; 578: 610-614
        • Wang P.
        • Loh K.H.
        • Wu M.
        • Morgan D.A.
        • Schneeberger M.
        • Yu X.
        • Chi J.
        • Kosse C.
        • Kim D.
        • Rahmouni K.
        • Cohen P.
        • Friedman J.
        A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue.
        Nature. 2020; 583: 839-844
        • Wolf Y.
        • Boura-Halfon S.
        • Cortese N.
        • Haimon Z.
        • Sar Shalom H.
        • Kuperman Y.
        • Kalchenko V.
        • Brandis A.
        • David E.
        • Segal-Hayoun Y.
        • Chappell-Maor L.
        • Yaron A.
        • Jung S.
        Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure.
        Nat Immunol. 2017; 18: 665-674
        • Cypess A.M.
        • Lehman S.
        • Williams G.
        • Tal I.
        • Rodman D.
        • Goldfine A.B.
        • Kuo F.C.
        • Palmer E.L.
        • Tseng Y.H.
        • Doria A.
        • Kolodny G.M.
        • Kahn C.R.
        Identification and importance of brown adipose tissue in adult humans.
        N Engl J Med. 2009; 360: 1509-1517
        • Saito M.
        • Okamatsu-Ogura Y.
        • Matsushita M.
        • Watanabe K.
        • Yoneshiro T.
        • Nio-Kobayashi J.
        • Iwanaga T.
        • Miyagawa M.
        • Kameya T.
        • Nakada K.
        • Kawai Y.
        • Tsujisaki M.
        High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity.
        Diabetes. 2009; 58: 1526-1531
        • Yoneshiro T.
        • Aita S.
        • Matsushita M.
        • Okamatsu-Ogura Y.
        • Kameya T.
        • Kawai Y.
        • Miyagawa M.
        • Tsujisaki M.
        • Saito M.
        Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans.
        Obesity (Silver Spring). 2011; 19: 1755-1760
        • Liebelt F.
        • Vertegaal A.C.
        Ubiquitin-dependent and independent roles of SUMO in proteostasis.
        Am J Physiol Cell Physiol. 2016; 311: C284-C296
        • Pirzgalska R.M.
        • Seixas E.
        • Seidman J.S.
        • Link V.M.
        • Sanchez N.M.
        • Mahu I.
        • Mendes R.
        • Gres V.
        • Kubasova N.
        • Morris I.
        • Arus B.A.
        • Larabee C.M.
        • Vasques M.
        • Tortosa F.
        • Sousa A.L.
        • Anandan S.
        • Tranfield E.
        • Hahn M.K.
        • Iannacone M.
        • Spann N.J.
        • Glass C.K.
        • Domingos A.I.
        Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine.
        Nat Med. 2017; 23: 1309-1318
        • Santoro A.
        • Bientinesi E.
        • Monti D.
        Immunosenescence and inflammaging in the aging process: age-related diseases or longevity?.
        Ageing Res Rev. 2021; 71101422
        • Dahlquist K.J.V.
        • Camell C.D.
        Aging leukocytes and the inflammatory microenvironment of the adipose tissue.
        Diabetes. 2022; 71: 23-30
        • Yu Q.
        • Xiao H.
        • Jedrychowski M.P.
        • Schweppe D.K.
        • Navarrete-Perea J.
        • Knott J.
        • Rogers J.
        • Chouchani E.T.
        • Gygi S.P.
        Sample multiplexing for targeted pathway proteomics in aging mice.
        Proc Natl Acad Sci U S A. 2020; 117: 9723-9732
        • Goldberg E.L.
        • Shchukina I.
        • Youm Y.H.
        • Ryu S.
        • Tsusaka T.
        • Young K.C.
        • Camell C.D.
        • Dlugos T.
        • Artyomov M.N.
        • Dixit V.D.
        IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2.
        Cell Metab. 2021; 33e5
        • Camell C.D.
        • Sander J.
        • Spadaro O.
        • Lee A.
        • Nguyen K.Y.
        • Wing A.
        • Goldberg E.L.
        • Youm Y.H.
        • Brown C.W.
        • Elsworth J.
        • Rodeheffer M.S.
        • Schultze J.L.
        • Dixit V.D.
        Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing.
        Nature. 2017; 550: 119-123
        • Kohlgruber A.C.
        • Gal-Oz S.T.
        • LaMarche N.M.
        • Shimazaki M.
        • Duquette D.
        • Koay H.F.
        • Nguyen H.N.
        • Mina A.I.
        • Paras T.
        • Tavakkoli A.
        • von Andrian U.
        • Uldrich A.P.
        • Godfrey D.I.
        • Banks A.S.
        • Shay T.
        • Brenner M.B.
        • Lynch L.
        Gammadelta T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.
        Nat Immunol. 2018; 19: 464-474
        • Brestoff J.R.
        • Kim B.S.
        • Saenz S.A.
        • Stine R.R.
        • Monticelli L.A.
        • Sonnenberg G.F.
        • Thome J.J.
        • Farber D.L.
        • Lutfy K.
        • Seale P.
        • Artis D.
        Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity.
        Nature. 2015; 519: 242-246
        • Bapat S.P.
        • Myoung Suh J.
        • Fang S.
        • Liu S.
        • Zhang Y.
        • Cheng A.
        • Zhou C.
        • Liang Y.
        • LeBlanc M.
        • Liddle C.
        • Atkins A.R.
        • Yu R.T.
        • Downes M.
        • Evans R.M.
        • Zheng Y.
        Depletion of fat-resident treg cells prevents age-associated insulin resistance.
        Nature. 2015; 528: 137-141
        • Hill A.A.
        • Reid Bolus W.
        • Hasty A.H.
        A decade of progress in adipose tissue macrophage biology.
        Immunol Rev. 2014; 262: 134-152
        • Zhaohua Cai Y.H.
        • He Ben
        New insights into adipose tissue macrophages in obesity and insulin resistance.
        Cells. 2022; 11: 1424
        • Cox N.
        • Crozet L.
        • Holtman I.R.
        • Loyher P.L.
        • Lazarov T.
        • White J.B.
        • Mass E.
        • Stanley E.R.
        • Elemento O.
        • Glass C.K.
        • Geissmann F.
        Diet-regulated production of PDGFcc by macrophages controls energy storage.
        Science. 2021; 373
        • Andersson O.
        • Korach-Andre M.
        • Reissmann E.
        • Ibanez C.F.
        • Bertolino P.
        Growth/differentiation factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity.
        Proc Natl Acad Sci U S A. 2008; 105: 7252-7256
        • Stout-Delgado H.W.
        • Cho S.J.
        • Chu S.G.
        • Mitzel D.N.
        • Villalba J.
        • El-Chemaly S.
        • Ryter S.W.
        • Choi A.M.
        • Rosas I.O.
        Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation.
        Am J Respir Cell Mol Biol. 2016; 55: 252-263
        • He M.
        • Chiang H.H.
        • Luo H.
        • Zheng Z.
        • Qiao Q.
        • Wang L.
        • Tan M.
        • Ohkubo R.
        • Mu W.C.
        • Zhao S.
        • Wu H.
        • Chen D.
        An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance.
        Cell Metab. 2020; 31e5
        • Minhas P.S.
        • Liu L.
        • Moon P.K.
        • Joshi A.U.
        • Dove C.
        • Mhatre S.
        • Contrepois K.
        • Wang Q.
        • Lee B.A.
        • Coronado M.
        • Bernstein D.
        • Snyder M.P.
        • Migaud M.
        • Majeti R.
        • Mochly-Rosen D.
        • Rabinowitz J.D.
        • Andreasson K.I.
        Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation.
        Nat Immunol. 2019; 20: 50-63
        • Linehan E.
        • Dombrowski Y.
        • Snoddy R.
        • Fallon P.G.
        • Kissenpfennig A.
        • Fitzgerald D.C.
        Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis.
        Aging Cell. 2014; 13: 699-708
        • Minhas P.S.
        • Latif-Hernandez A.
        • McReynolds M.R.
        • Durairaj A.S.
        • Wang Q.
        • Rubin A.
        • Joshi A.U.
        • He J.Q.
        • Gauba E.
        • Liu L.
        • Wang C.
        • Linde M.
        • Sugiura Y.
        • Moon P.K.
        • Majeti R.
        • Suematsu M.
        • Mochly-Rosen D.
        • Weissman I.L.
        • Longo F.M.
        • Rabinowitz J.D.
        • Andreasson K.I.
        Restoring metabolism of myeloid cells reverses cognitive decline in ageing.
        Nature. 2021; 590: 122-128
        • Lumeng C.N.
        • Liu J.
        • Geletka L.
        • Delaney C.
        • Delproposto J.
        • Desai A.
        • Oatmen K.
        • Martinez-Santibanez G.
        • Julius A.
        • Garg S.
        • Yung R.L.
        Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue.
        J Immunol. 2011; 187: 6208-6216
        • Brigger D.
        • Riether C.
        • van Brummelen R.
        • Mosher K.I.
        • Shiu A.
        • Ding Z.
        • Zbaren N.
        • Gasser P.
        • Guntern P.
        • Yousef H.
        • Castellano J.M.
        • Storni F.
        • Graff-Radford N.
        • Britschgi M.
        • Grandgirard D.
        • Hinterbrandner M.
        • Siegrist M.
        • Moullan N.
        • Hofstetter W.
        • Leib S.L.
        • Villiger P.M.
        • Auwerx J.
        • Villeda S.A.
        • Wyss-Coray T.
        • Noti M.
        • Eggel A.
        Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age.
        Nat Metab. 2020; 2: 688-702
        • Wu D.
        • Ren Z.
        • Pae M.
        • Guo W.
        • Cui X.
        • Merrill A.H.
        • Meydani S.N.
        Aging up-regulates expression of inflammatory mediators in mouse adipose tissue.
        J Immunol. 2007; 179: 4829-4839
        • Morrisette-Thomas V.
        • Cohen A.A.
        • Fulop T.
        • Riesco E.
        • Legault V.
        • Li Q.
        • Milot E.
        • Dusseault-Belanger F.
        • Ferrucci L.
        Inflamm-aging does not simply reflect increases in pro-inflammatory markers.
        Mech Ageing Dev. 2014; 139: 49-57
        • Akoumianakis I.
        • Antoniades C.
        The interplay between adipose tissue and the cardiovascular system: is fat always bad?.
        Cardiovasc Res. 2017; 113: 999-1008
        • Camell C.D.
        • Gunther P.
        • Lee A.
        • Goldberg E.L.
        • Spadaro O.
        • Youm Y.H.
        • Bartke A.
        • Hubbard G.B.
        • Ikeno Y.
        • Ruddle N.H.
        • Schultze J.
        • Dixit V.D.
        Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis.
        Cell Metab. 2019; 30e6
        • Rosenberg H.F.
        • Dyer K.D.
        • Foster P.S.
        Eosinophils: changing perspectives in health and disease.
        Nat Rev Immunol. 2013; 13: 9-22
        • Molofsky A.B.
        • Nussbaum J.C.
        • Liang H.E.
        • Van Dyken S.J.
        • Cheng L.E.
        • Mohapatra A.
        • Chawla A.
        • Locksley R.M.
        Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages.
        J Exp Med. 2013; 210: 535-549
        • Rana B.M.J.
        • Jou E.
        • Barlow J.L.
        • Rodriguez-Rodriguez N.
        • Walker J.A.
        • Knox C.
        • Jolin H.E.
        • Hardman C.S.
        • Sivasubramaniam M.
        • Szeto A.
        • Cohen E.S.
        • Scott I.C.
        • Sleeman M.A.
        • Chidomere C.I.
        • Cruz Migoni S.
        • Caamano J.
        • Jorgensen H.F.
        • Carobbio S.
        • Vidal-Puig A.
        • McKenzie A.N.J.
        A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue.
        J Exp Med. 2019; 216: 1999-2009
        • Wu D.
        • Molofsky A.B.
        • Liang H.E.
        • Ricardo-Gonzalez R.R.
        • Jouihan H.A.
        • Bando J.K.
        • Chawla A.
        • Locksley R.M.
        Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis.
        Science. 2011; 332: 243-247
        • Lackey D.E.
        • Olefsky J.M.
        Regulation of metabolism by the innate immune system.
        Nat Rev Endocrinol. 2016; 12: 15-28
        • Lee E.H.
        • Itan M.
        • Jang J.
        • Gu H.J.
        • Rozenberg P.
        • Mingler M.K.
        • Wen T.
        • Yoon J.
        • Park S.Y.
        • Roh J.Y.
        • Choi C.S.
        • Park W.J.
        • Munitz A.
        • Jung Y.
        Eosinophils support adipocyte maturation and promote glucose tolerance in obesity.
        Sci Rep. 2018; 8: 9894
        • Diefenbach A.
        • Colonna M.
        • Koyasu S.
        Development, differentiation, and diversity of innate lymphoid cells.
        Immunity. 2014; 41: 354-365
        • Kim B.S.
        • Artis D.
        Group 2 innate lymphoid cells in health and disease.
        Cold Spring Harb Perspect Biol. 2015; : 7
        • Montanari T.
        • Poscic N.
        • Colitti M.
        Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review.
        Obes Rev. 2017; 18: 495-513
        • Price A.E.
        • Liang H.E.
        • Sullivan B.M.
        • Reinhardt R.L.
        • Eisley C.J.
        • Erle D.J.
        • Locksley R.M.
        Systemically dispersed innate IL-13-expressing cells in type 2 immunity.
        Proc Natl Acad Sci U S A. 2010; 107: 11489-11494
        • Lee M.W.
        • Odegaard J.I.
        • Mukundan L.
        • Qiu Y.
        • Molofsky A.B.
        • Nussbaum J.C.
        • Yun K.
        • Locksley R.M.
        • Chawla A.
        Activated type 2 innate lymphoid cells regulate beige fat biogenesis.
        Cell. 2015; 160: 74-87
        • Feuerer M.
        • Herrero L.
        • Cipolletta D.
        • Naaz A.
        • Wong J.
        • Nayer A.
        • Lee J.
        • Goldfine A.B.
        • Benoist C.
        • Shoelson S.
        • Mathis D.
        Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters.
        Nat Med. 2009; 15: 930-939
        • Lynch L.
        • Michelet X.
        • Zhang S.
        • Brennan P.J.
        • Moseman A.
        • Lester C.
        • Besra G.
        • Vomhof-Dekrey E.E.
        • Tighe M.
        • Koay H.F.
        • Godfrey D.I.
        • Leadbetter E.A.
        • Sant'Angelo D.B.
        • von Andrian U.
        • Brenner M.B.
        Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue.
        Nat Immunol. 2015; 16: 85-95
        • Khairallah C.
        • Chu T.H.
        • Sheridan B.S.
        Tissue adaptations of memory and tissue-resident Gamma Delta T cells.
        Front Immunol. 2018; 9: 2636
        • Nishimura S.
        • Manabe I.
        • Takaki S.
        • Nagasaki M.
        • Otsu M.
        • Yamashita H.
        • Sugita J.
        • Yoshimura K.
        • Eto K.
        • Komuro I.
        • Kadowaki T.
        • Nagai R.
        Adipose natural regulatory B cells negatively control adipose tissue inflammation.
        Cell Metab. 2013; 18: 759-766
        • Srikakulapu P.
        • McNamara C.A.
        B lymphocytes and adipose tissue inflammation.
        Arterioscler Thromb Vasc Biol. 2020; 40: 1110-1122
        • James R.C.
        • Burns T.W.
        • Chase G.R.
        Lipolysis of human adipose tissue cells: influence of donor factors.
        J Lab Clin Med. 1971; 77: 254-266
        • Lonnqvist F.
        • Nyberg B.
        • Wahrenberg H.
        • Arner P.
        Catecholamine-induced lipolysis in adipose tissue of the elderly.
        J Clin Invest. 1990; 85: 1614-1621
        • Gao H.
        • Arner P.
        • Beauchef G.
        • Guere C.
        • Vie K.
        • Dahlman I.
        • Mejhert N.
        • Ryden M.
        Age-induced reduction in human lipolysis: a potential role for adipocyte noradrenaline degradation.
        Cell Metab. 2020; 32: 1-3
        • Pontzer H.
        • Yamada Y.
        • Sagayama H.
        • Ainslie P.N.
        • Andersen L.F.
        • Anderson L.J.
        • Arab L.
        • Baddou I.
        • Bedu-Addo K.
        • Blaak E.E.
        • Blanc S.
        • Bonomi A.G.
        • Bouten C.V.C.
        • Bovet P.
        • Buchowski M.S.
        • Butte N.F.
        • Camps S.G.
        • Close G.L.
        • Cooper J.A.
        • Cooper R.
        • Das S.K.
        • Dugas L.R.
        • Ekelund U.
        • Entringer S.
        • Forrester T.
        • Fudge B.W.
        • Goris A.H.
        • Gurven M.
        • Hambly C.
        • El Hamdouchi A.
        • Hoos M.B.
        • Hu S.
        • Joonas N.
        • Joosen A.M.
        • Katzmarzyk P.
        • Kempen K.P.
        • Kimura M.
        • Kraus W.E.
        • Kushner R.F.
        • Lambert E.V.
        • Leonard W.R.
        • Lessan N.
        • Martin C.
        • Medin A.C.
        • Meijer E.P.
        • Morehen J.C.
        • Morton J.P.
        • Neuhouser M.L.
        • Nicklas T.A.
        • Ojiambo R.M.
        • Pietilainen K.H.
        • Pitsiladis Y.P.
        • Plange-Rhule J.
        • Plasqui G.
        • Prentice R.L.
        • Rabinovich R.A.
        • Racette S.B.
        • Raichlen D.A.
        • Ravussin E.
        • Reynolds R.M.
        • Roberts S.B.
        • Schuit A.J.
        • Sjodin A.M.
        • Stice E.
        • Urlacher S.S.
        • Valenti G.
        • Van Etten L.M.
        • Van Mil E.A.
        • Wells J.C.K.
        • Wilson G.
        • Wood B.M.
        • Yanovski J.
        • Yoshida T.
        • Zhang X.
        • Murphy-Alford A.J.
        • Loechl C.
        • Luke A.H.
        • Rood J.
        • Schoeller D.A.
        • Westerterp K.R.
        • Wong W.W.
        • Speakman J.R.
        Daily energy expenditure through the human life course.
        Science. 2021; 373: 808-812
        • Berry D.C.
        • Jiang Y.
        • Arpke R.W.
        • Close E.L.
        • Uchida A.
        • Reading D.
        • Berglund E.D.
        • Kyba M.
        • Graff J.M.
        Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans.
        Cell Metab. 2017; 25: 166-181
        • Wang W.
        • Ishibashi J.
        • Trefely S.
        • Shao M.
        • Cowan A.J.
        • Sakers A.
        • Lim H.W.
        • O'Connor S.
        • Doan M.T.
        • Cohen P.
        • Baur J.A.
        • King M.T.
        • Veech R.L.
        • Won K.J.
        • Rabinowitz J.D.
        • Snyder N.W.
        • Gupta R.K.
        • Seale P.
        A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate.
        Cell Metab. 2019; 30e5
        • Bahler L.
        • Verberne H.J.
        • Admiraal W.M.
        • Stok W.J.
        • Soeters M.R.
        • Hoekstra J.B.
        • Holleman F.
        Differences in sympathetic nervous stimulation of Brown adipose tissue between the young and old, and the lean and obese.
        J Nucl Med. 2016; 57: 372-377
        • Seki T.
        • Hosaka K.
        • Fischer C.
        • Lim S.
        • Andersson P.
        • Abe M.
        • Iwamoto H.
        • Gao Y.
        • Wang X.
        • Fong G.H.
        • Cao Y.
        Ablation of endothelial VEGFR1 improves metabolic dysfunction by inducing adipose tissue browning.
        J Exp Med. 2018; 215: 611-626
        • Grunewald M.
        • Kumar S.
        • Sharife H.
        • Volinsky E.
        • Gileles-Hillel A.
        • Licht T.
        • Permyakova A.
        • Hinden L.
        • Azar S.
        • Friedmann Y.
        • Kupetz P.
        • Tzuberi R.
        • Anisimov A.
        • Alitalo K.
        • Horwitz M.
        • Leebhoff S.
        • Khoma O.Z.
        • Hlushchuk R.
        • Djonov V.
        • Abramovitch R.
        • Tam J.
        • Keshet E.
        Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span.
        Science. 2021; 373
        • Hernandez-Segura A.
        • Nehme J.
        • Demaria M.
        Hallmarks of cellular senescence.
        Trends Cell Biol. 2018; 28: 436-453
        • Schosserer M.
        • Grillari J.
        • Wolfrum C.
        • Scheideler M.
        Age-induced changes in white, brite, and Brown adipose depots: a mini-review.
        Gerontology. 2018; 64: 229-236
        • Tchkonia T.
        • Morbeck D.E.
        • Von Zglinicki T.
        • Van Deursen J.
        • Lustgarten J.
        • Scrable H.
        • Khosla S.
        • Jensen M.D.
        • Kirkland J.L.
        Fat tissue, aging, and cellular senescence.
        Aging Cell. 2010; 9: 667-684
        • Liu Z.
        • Jin L.
        • Yang J.K.
        • Wang B.
        • Wu K.K.L.
        • Hallenborg P.
        • Xu A.
        • Cheng K.K.Y.
        The dysfunctional MDM2-p53 Axis in adipocytes contributes to aging-related metabolic complications by induction of lipodystrophy.
        Diabetes. 2018; 67: 2397-2409
        • Espinosa De Ycaza A.E.
        • Sondergaard E.
        • Morgan-Bathke M.
        • Carranza Leon B.G.
        • Lytle K.A.
        • Ramos P.
        • Kirkland J.L.
        • Tchkonia T.
        • Jensen M.D.
        Senescent cells in human adipose tissue: a cross-sectional study.
        Obesity (Silver Spring). 2021; 29: 1320-1327
        • Stout M.B.
        • Tchkonia T.
        • Pirtskhalava T.
        • Palmer A.K.
        • List E.O.
        • Berryman D.E.
        • Lubbers E.R.
        • Escande C.
        • Spong A.
        • Masternak M.M.
        • Oberg A.L.
        • LeBrasseur N.K.
        • Miller R.A.
        • Kopchick J.J.
        • Bartke A.
        • Kirkland J.L.
        Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice.
        Aging. 2014; 6: 575-586
        • Briot A.
        • Decaunes P.
        • Volat F.
        • Belles C.
        • Coupaye M.
        • Ledoux S.
        • Bouloumie A.
        Senescence alters PPARgamma (Peroxisome proliferator-activated receptor Gamma)-dependent fatty acid handling in human adipose tissue microvascular endothelial cells and favors inflammation.
        Arterioscler Thromb Vasc Biol. 2018; 38: 1134-1146
        • Liu Z.
        • Wu K.K.L.
        • Jiang X.
        • Xu A.
        • Cheng K.K.Y.
        The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders.
        Clin Sci (Lond). 2020; 134: 315-330
        • Yamada T.
        • Kamiya M.
        • Higuchi M.
        • Nakanishi N.
        Fat depot-specific differences of macrophage infiltration and cellular senescence in obese bovine adipose tissues.
        J Vet Med Sci. 2018; 80: 1495-1503
        • Karagiannides I.
        • Tchkonia T.
        • Dobson D.E.
        • Steppan C.M.
        • Cummins P.
        • Chan G.
        • Salvatori K.
        • Hadzopoulou-Cladaras M.
        • Kirkland J.L.
        Altered expression of C/EBP family members results in decreased adipogenesis with aging.
        Am J Physiol Regul Integr Comp Physiol. 2001; 280: R1772-R1780
        • Xu M.
        • Palmer A.K.
        • Ding H.
        • Weivoda M.M.
        • Pirtskhalava T.
        • White T.A.
        • Sepe A.
        • Johnson K.O.
        • Stout M.B.
        • Giorgadze N.
        • Jensen M.D.
        • LeBrasseur N.K.
        • Tchkonia T.
        • Kirkland J.L.
        Targeting senescent cells enhances adipogenesis and metabolic function in old age.
        elife. 2015; 4e12997
        • Fu W.
        • Liu Y.
        • Sun C.
        • Yin H.
        Transient p53 inhibition sensitizes aged white adipose tissue for beige adipocyte recruitment by blocking mitophagy.
        FASEB J. 2019; 33: 844-856
        • Le Pelletier L.
        • Mantecon M.
        • Gorwood J.
        • Auclair M.
        • Foresti R.
        • Motterlini R.
        • Laforge M.
        • Atlan M.
        • Feve B.
        • Capeau J.
        • Lagathu C.
        • Bereziat V.
        Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction.
        elife. 2021; : 10
        • Baker D.J.
        • Wijshake T.
        • Tchkonia T.
        • LeBrasseur N.K.
        • Childs B.G.
        • van de Sluis B.
        • Kirkland J.L.
        • van Deursen J.M.
        Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders.
        Nature. 2011; 479: 232-236
        • Xu M.
        • Tchkonia T.
        • Ding H.
        • Ogrodnik M.
        • Lubbers E.R.
        • Pirtskhalava T.
        • White T.A.
        • Johnson K.O.
        • Stout M.B.
        • Mezera V.
        • Giorgadze N.
        • Jensen M.D.
        • LeBrasseur N.K.
        • Kirkland J.L.
        JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age.
        Proc Natl Acad Sci U S A. 2015; 112: E6301-E6310
        • Klingberg F.
        • Hinz B.
        • White E.S.
        The myofibroblast matrix: implications for tissue repair and fibrosis.
        J Pathol. 2013; 229: 298-309
        • Marcelin G.
        • Ferreira A.
        • Liu Y.
        • Atlan M.
        • Aron-Wisnewsky J.
        • Pelloux V.
        • Botbol Y.
        • Ambrosini M.
        • Fradet M.
        • Rouault C.
        • Henegar C.
        • Hulot J.S.
        • Poitou C.
        • Torcivia A.
        • Nail-Barthelemy R.
        • Bichet J.C.
        • Gautier E.L.
        • Clement K.
        A PDGFRalpha-mediated switch toward CD9(high) adipocyte progenitors controls obesity-induced adipose tissue fibrosis.
        Cell Metab. 2017; 25: 673-685
        • Lin J.Z.
        • Rabhi N.
        • Farmer S.R.
        Myocardin-related transcription factor a promotes recruitment of ITGA5+ profibrotic progenitors during obesity-induced adipose tissue fibrosis.
        Cell Rep. 2018; 23: 1977-1987
        • Xu M.
        • Pirtskhalava T.
        • Farr J.N.
        • Weigand B.M.
        • Palmer A.K.
        • Weivoda M.M.
        • Inman C.L.
        • Ogrodnik M.B.
        • Hachfeld C.M.
        • Fraser D.G.
        • Onken J.L.
        • Johnson K.O.
        • Verzosa G.C.
        • Langhi L.G.P.
        • Weigl M.
        • Giorgadze N.
        • LeBrasseur N.K.
        • Miller J.D.
        • Jurk D.
        • Singh R.J.
        • Allison D.B.
        • Ejima K.
        • Hubbard G.B.
        • Ikeno Y.
        • Cubro H.
        • Garovic V.D.
        • Hou X.
        • Weroha S.J.
        • Robbins P.D.
        • Niedernhofer L.J.
        • Khosla S.
        • Tchkonia T.
        • Kirkland J.L.
        Senolytics improve physical function and increase lifespan in old age.
        Nat Med. 2018; 24: 1246-1256
        • Hickson L.J.
        • Langhi Prata L.G.P.
        • Bobart S.A.
        • Evans T.K.
        • Giorgadze N.
        • Hashmi S.K.
        • Herrmann S.M.
        • Jensen M.D.
        • Jia Q.
        • Jordan K.L.
        • Kellogg T.A.
        • Khosla S.
        • Koerber D.M.
        • Lagnado A.B.
        • Lawson D.K.
        • LeBrasseur N.K.
        • Lerman L.O.
        • McDonald K.M.
        • McKenzie T.J.
        • Passos J.F.
        • Pignolo R.J.
        • Pirtskhalava T.
        • Saadiq I.M.
        • Schaefer K.K.
        • Textor S.C.
        • Victorelli S.G.
        • Volkman T.L.
        • Xue A.
        • Wentworth M.A.
        • Wissler Gerdes E.O.
        • Zhu Y.
        • Tchkonia T.
        • Kirkland J.L.
        Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease.
        EBioMedicine. 2019; 47: 446-456
        • Justice J.N.
        • Nambiar A.M.
        • Tchkonia T.
        • LeBrasseur N.K.
        • Pascual R.
        • Hashmi S.K.
        • Prata L.
        • Masternak M.M.
        • Kritchevsky S.B.
        • Musi N.
        • Kirkland J.L.
        Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study.
        EBioMedicine. 2019; 40: 554-563
        • Crespo-Garcia S.
        • Tsuruda P.R.
        • Dejda A.
        • Ryan R.D.
        • Fournier F.
        • Chaney S.Y.
        • Pilon F.
        • Dogan T.
        • Cagnone G.
        • Patel P.
        • Buscarlet M.
        • Dasgupta S.
        • Girouard G.
        • Rao S.R.
        • Wilson A.M.
        • O'Brien R.
        • Juneau R.
        • Guber V.
        • Dubrac A.
        • Beausejour C.
        • Armstrong S.
        • Mallette F.A.
        • Yohn C.B.
        • Joyal J.S.
        • Marquess D.
        • Beltran P.J.
        • Sapieha P.
        Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition.
        Cell Metab. 2021; 33e7
        • Kirkland J.L.
        • Tchkonia T.
        Clinical strategies and animal models for developing senolytic agents.
        Exp Gerontol. 2015; 68: 19-25
        • Zhu Y.
        • Tchkonia T.
        • Fuhrmann-Stroissnigg H.
        • Dai H.M.
        • Ling Y.Y.
        • Stout M.B.
        • Pirtskhalava T.
        • Giorgadze N.
        • Johnson K.O.
        • Giles C.B.
        • Wren J.D.
        • Niedernhofer L.J.
        • Robbins P.D.
        • Kirkland J.L.
        Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors.
        Aging Cell. 2016; 15: 428-435
        • Kirkland J.L.
        • Tchkonia T.
        Senolytic drugs: from discovery to translation.
        J Intern Med. 2020; 288: 518-536
        • Wissler Gerdes E.O.
        • Misra A.
        • Netto J.M.E.
        • Tchkonia T.
        • Kirkland J.L.
        Strategies for late phase preclinical and early clinical trials of senolytics.
        Mech Ageing Dev. 2021; 200111591
        • Palmer A.K.
        • Xu M.
        • Zhu Y.
        • Pirtskhalava T.
        • Weivoda M.M.
        • Hachfeld C.M.
        • Prata L.G.
        • van Dijk T.H.
        • Verkade E.
        • Casaclang-Verzosa G.
        • Johnson K.O.
        • Cubro H.
        • Doornebal E.J.
        • Ogrodnik M.
        • Jurk D.
        • Jensen M.D.
        • Chini E.N.
        • Miller J.D.
        • Matveyenko A.
        • Stout M.B.
        • Schafer M.J.
        • White T.A.
        • Hickson L.J.
        • Demaria M.
        • Garovic V.
        • Grande J.
        • Arriaga E.A.
        • Kuipers F.
        • von Zglinicki T.
        • LeBrasseur N.K.
        • Campisi J.
        • Tchkonia T.
        • Kirkland J.L.
        Targeting senescent cells alleviates obesity-induced metabolic dysfunction.
        Aging Cell. 2019; 18e12950
        • Masayoshi Suda I.S.
        • Katsuumi Goro
        • Yoshida Yohko
        • Hayashi Yuka
        • Ikegami Ryutaro
        • Matsumoto Naomi
        • Yoshida Yutaka
        • Mikawa Ryuta
        • Katayama Akihiro
        • Wada Jun
        • Seki Masahide
        • Suzuki Yutaka
        • Iwama Atsushi
        • Nakagami Hironori
        • Nagasawa Ayako
        • Morishita Ryuichi
        • Sugimoto Masataka
        • Okuda Shujiro
        • Tsuchida Masanori
        • Ozaki Kazuyuki
        • Nakanishi-Matsui Mayumi
        • Minamino Tohru
        Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice.
        Nat Aging. 2021; 1: 1117-1126
        • Weir H.J.
        • Yao P.
        • Huynh F.K.
        • Escoubas C.C.
        • Goncalves R.L.
        • Burkewitz K.
        • Laboy R.
        • Hirschey M.D.
        • Mair W.B.
        Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling.
        Cell Metab. 2017; 26e5
        • Longo V.D.
        • Di Tano M.
        • Mattson M.P.
        • Guidi N.
        Intermittent and periodic fasting, longevity and disease.
        Nat Aging. 2021; 1: 47-59
        • Longo V.D.
        • Anderson R.M.
        Nutrition, longevity and disease: from molecular mechanisms to interventions.
        Cell. 2022; 185: 1455-1470
        • Green C.L.
        • Lamming D.W.
        • Fontana L.
        Molecular mechanisms of dietary restriction promoting health and longevity.
        Nat Rev Mol Cell Biol. 2022; 23: 56-73
        • van den Hoek A.M.
        • Zondag G.C.M.
        • Verschuren L.
        • de Ruiter C.
        • Attema J.
        • de Wit E.C.
        • Schwerk A.M.K.
        • Guigas B.
        • Lek S.
        • Rietman A.
        • Strijker R.
        • Kleemann R.
        A novel nutritional supplement prevents muscle loss and accelerates muscle mass recovery in caloric-restricted mice.
        Metabolism. 2019; 97: 57-67
        • Miller K.N.
        • Burhans M.S.
        • Clark J.P.
        • Howell P.R.
        • Polewski M.A.
        • DeMuth T.M.
        • Eliceiri K.W.
        • Lindstrom M.J.
        • Ntambi J.M.
        • Anderson R.M.
        Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids.
        Aging Cell. 2017; 16: 497-507
        • Ravussin E.
        • Redman L.M.
        • Rochon J.
        • Das S.K.
        • Fontana L.
        • Kraus W.E.
        • Romashkan S.
        • Williamson D.A.
        • Meydani S.N.
        • Villareal D.T.
        • Smith S.R.
        • Stein R.I.
        • Scott T.M.
        • Stewart T.M.
        • Saltzman E.
        • Klein S.
        • Bhapkar M.
        • Martin C.K.
        • Gilhooly C.H.
        • Holloszy J.O.
        • Hadley E.C.
        • Roberts S.B.
        A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity.
        J Gerontol A Biol Sci Med Sci. 2015; 70: 1097-1104
        • Kraus W.E.
        • Bhapkar M.
        • Huffman K.M.
        • Pieper C.F.
        • Krupa Das S.
        • Redman L.M.
        • Villareal D.T.
        • Rochon J.
        • Roberts S.B.
        • Ravussin E.
        • Holloszy J.O.
        • Fontana L.
        2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, phase 2, randomised controlled trial.
        Lancet Diabetes Endocrinol. 2019; 7: 673-683
        • Valle A.
        • Guevara R.
        • Garcia-Palmer F.J.
        • Roca P.
        • Oliver J.
        Caloric restriction retards the age-related decline in mitochondrial function of brown adipose tissue.
        Rejuvenation Res. 2008; 11: 597-604
        • Spadaro O.
        • Youm Y.
        • Shchukina I.
        • Ryu S.
        • Sidorov S.
        • Ravussin A.
        • Nguyen K.
        • Aladyeva E.
        • Predeus A.N.
        • Smith S.R.
        • Ravussin E.
        • Galban C.
        • Artyomov M.N.
        • Dixit V.D.
        Caloric restriction in humans reveals immunometabolic regulators of health span.
        Science. 2022; 375: 671-677
        • Hill C.M.
        • Albarado D.C.
        • Coco L.G.
        • Spann R.A.
        • Khan M.S.
        • Qualls-Creekmore E.
        • Burk D.H.
        • Burke S.J.
        • Collier J.J.
        • Yu S.
        • McDougal D.H.
        • Berthoud H.R.
        • Munzberg H.
        • Bartke A.
        • Morrison C.D.
        FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice.
        Nat Commun. 2022; 13: 1897
        • Goldenberg R.M.
        • Berard L.D.
        • Cheng A.Y.Y.
        • Gilbert J.D.
        • Verma S.
        • Woo V.C.
        • Yale J.F.
        SGLT2 inhibitor-associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis.
        Clin Ther. 2016; 38e1
        • Veech R.L.
        • Bradshaw P.C.
        • Clarke K.
        • Curtis W.
        • Pawlosky R.
        • King M.T.
        Ketone bodies mimic the life span extending properties of caloric restriction.
        IUBMB Life. 2017; 69: 305-314
        • Han Y.M.
        • Bedarida T.
        • Ding Y.
        • Somba B.K.
        • Lu Q.
        • Wang Q.
        • Song P.
        • Zou M.H.
        Beta-hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4.
        Mol Cell. 2018; 71e5
        • Lee I.M.
        • Shiroma E.J.
        • Lobelo F.
        • Puska P.
        • Blair S.N.
        • Katzmarzyk P.T.
        Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy.
        Lancet. 2012; 380: 219-229
        • Warburton D.E.
        • Nicol C.W.
        • Bredin S.S.
        Health benefits of physical activity: the evidence.
        CMAJ. 2006; 174: 801-809
        • Lopez-Torres Hidalgo J.
        • Group D-E
        Effectiveness of physical exercise in the treatment of depression in older adults as an alternative to antidepressant drugs in primary care.
        BMC Psychiatry. 2019; 19: 21
        • Brinkley T.E.
        • Leng I.
        • Bailey M.J.
        • Houston D.K.
        • Hugenschmidt C.E.
        • Nicklas B.J.
        • Hundley W.G.
        Effects of exercise and weight loss on proximal aortic stiffness in older adults with obesity.
        Circulation. 2021; 144: 684-693
        • Khamoui A.V.
        • Park B.S.
        • Kim D.H.
        • Yeh M.C.
        • Oh S.L.
        • Elam M.L.
        • Jo E.
        • Arjmandi B.H.
        • Salazar G.
        • Grant S.C.
        • Contreras R.J.
        • Lee W.J.
        • Kim J.S.
        Aerobic and resistance training dependent skeletal muscle plasticity in the colon-26 murine model of cancer cachexia.
        Metabolism. 2016; 65: 685-698
        • Nilsson M.I.
        • Bourgeois J.M.
        • Nederveen J.P.
        • Leite M.R.
        • Hettinga B.P.
        • Bujak A.L.
        • May L.
        • Lin E.
        • Crozier M.
        • Rusiecki D.R.
        • Moffatt C.
        • Azzopardi P.
        • Young J.
        • Yang Y.
        • Nguyen J.
        • Adler E.
        • Lan L.
        • Tarnopolsky M.A.
        Lifelong aerobic exercise protects against inflammaging and cancer.
        PLoS One. 2019; 14e0210863
        • Juppi H.K.
        • Sipila S.
        • Fachada V.
        • Hyvarinen M.
        • Cronin N.
        • Aukee P.
        • Karppinen J.E.
        • Selanne H.
        • Kujala U.M.
        • Kovanen V.
        • Karvinen S.
        • Laakkonen E.K.
        Total and regional body adiposity increases during menopause-evidence from a follow-up study.
        Aging Cell. 2022; 21e13621
        • Yoshino M.
        • Yoshino J.
        • Smith G.I.
        • Stein R.I.
        • Bittel A.J.
        • Bittel D.C.
        • et al.
        Worksite-based intensive lifestyle therapy has profound cardiometabolic benefits in people with obesity and type 2 diabetes.
        Cell Metab. 2022; 34: 1431-1441
        • Stensvold D.
        • Viken H.
        • Steinshamn S.L.
        • Dalen H.
        • Stoylen A.
        • Loennechen J.P.
        • Reitlo L.S.
        • Zisko N.
        • Baekkerud F.H.
        • Tari A.R.
        • Sandbakk S.B.
        • Carlsen T.
        • Ingebrigtsen J.E.
        • Lydersen S.
        • Mattsson E.
        • Anderssen S.A.
        • Fiatarone Singh M.A.
        • Coombes J.S.
        • Skogvoll E.
        • Vatten L.J.
        • Helbostad J.L.
        • Rognmo O.
        • Wisloff U.
        Effect of exercise training for five years on all cause mortality in older adults-the generation 100 study: randomised controlled trial.
        BMJ. 2020; 371m3485
        • Thirupathi A.
        • da Silva Pieri B.L.
        • Queiroz J.
        • Rodrigues M.S.
        • de Bem Silveira G.
        • de Souza D.R.
        • Luciano T.F.
        • Silveira P.C.L.
        • De Souza C.T.
        Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats.
        J Physiol Biochem. 2019; 75: 101-108
        • Martinez-Tellez B.
        • Sanchez-Delgado G.
        • Acosta F.M.
        • Alcantara J.M.A.
        • Amaro-Gahete F.J.
        • Martinez-Avila W.D.
        • Merchan-Ramirez E.
        • Munoz-Hernandez V.
        • Osuna-Prieto F.J.
        • Jurado-Fasoli L.
        • Xu H.
        • Ortiz-Alvarez L.
        • Arias-Tellez M.J.
        • Mendez-Gutierrez A.
        • Labayen I.
        • Ortega F.B.
        • Schonke M.
        • Rensen P.C.N.
        • Aguilera C.M.
        • Llamas-Elvira J.M.
        • Gil A.
        • Ruiz J.R.
        No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial.
        Nat Commun. 2022; 13: 5259
        • Tanaka R.
        • Fuse-Hamaoka S.
        • Kuroiwa M.
        • Kurosawa Y.
        • Endo T.
        • Kime R.
        • Yoneshiro T.
        • Hamaoka T.
        The effects of 10-week strength training in the winter on Brown-like adipose tissue vascular density.
        Int J Environ Res Public Health. 2022; 19
        • Castellano J.M.
        • Kirby E.D.
        • Wyss-Coray T.
        Blood-borne revitalization of the aged brain.
        JAMA Neurol. 2015; 72: 1191-1194
        • Rando T.A.
        • Chang H.Y.
        Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock.
        Cell. 2012; 148: 46-57
        • Mahmoudi S.
        • Xu L.
        • Brunet A.
        Turning back time with emerging rejuvenation strategies.
        Nat Cell Biol. 2019; 21: 32-43
        • Baht G.S.
        • Silkstone D.
        • Vi L.
        • Nadesan P.
        • Amani Y.
        • Whetstone H.
        • Wei Q.
        • Alman B.A.
        Exposure to a youthful circulaton rejuvenates bone repair through modulation of beta-catenin.
        Nat Commun. 2015; 6: 7131
        • Loffredo F.S.
        • Steinhauser M.L.
        • Jay S.M.
        • Gannon J.
        • Pancoast J.R.
        • Yalamanchi P.
        • Sinha M.
        • Dall'Osso C.
        • Khong D.
        • Shadrach J.L.
        • Miller C.M.
        • Singer B.S.
        • Stewart A.
        • Psychogios N.
        • Gerszten R.E.
        • Hartigan A.J.
        • Kim M.J.
        • Serwold T.
        • Wagers A.J.
        • Lee R.T.
        Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy.
        Cell. 2013; 153: 828-839
        • Ruckh J.M.
        • Zhao J.W.
        • Shadrach J.L.
        • van Wijngaarden P.
        • Rao T.N.
        • Wagers A.J.
        • Franklin R.J.
        Rejuvenation of regeneration in the aging central nervous system.
        Cell Stem Cell. 2012; 10: 96-103
        • Katsimpardi L.
        • Litterman N.K.
        • Schein P.A.
        • Miller C.M.
        • Loffredo F.S.
        • Wojtkiewicz G.R.
        • Chen J.W.
        • Lee R.T.
        • Wagers A.J.
        • Rubin L.L.
        Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors.
        Science. 2014; 344: 630-634
        • Palovics R.
        • Keller A.
        • Schaum N.
        • Tan W.
        • Fehlmann T.
        • Borja M.
        • Kern F.
        • Bonanno L.
        • Calcuttawala K.
        • Webber J.
        • McGeever A.
        • Luo J.
        • Pisco A.O.
        • Karkanias J.
        • Neff N.F.
        • Darmanis S.
        • Quake S.R.
        • Wyss-Coray T.
        Molecular hallmarks of heterochronic parabiosis at single-cell resolution.
        Nature. 2022; 603: 309-314
        • Villeda S.A.
        • Plambeck K.E.
        • Middeldorp J.
        • Castellano J.M.
        • Mosher K.I.
        • Luo J.
        • Smith L.K.
        • Bieri G.
        • Lin K.
        • Berdnik D.
        • Wabl R.
        • Udeochu J.
        • Wheatley E.G.
        • Zou B.
        • Simmons D.A.
        • Xie X.S.
        • Longo F.M.
        • Wyss-Coray T.
        Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.
        Nat Med. 2014; 20: 659-663
        • Castellano J.M.
        • Mosher K.I.
        • Abbey R.J.
        • McBride A.A.
        • James M.L.
        • Berdnik D.
        • Shen J.C.
        • Zou B.
        • Xie X.S.
        • Tingle M.
        • Hinkson I.V.
        • Angst M.S.
        • Wyss-Coray T.
        Human umbilical cord plasma proteins revitalize hippocampal function in aged mice.
        Nature. 2017; 544: 488-492
        • ZJC Amrita Sahu
        • Shinde Sunita N.
        • Sivakumar Sruthi
        • Pius Abish
        • Bhatia Ankit
        • Picciolini Silvia
        • Carlomagno Cristiano
        • Gualerzi Alice
        • Bedoni Marzia
        • Houten Bennett Van
        • Lovalekar Mita
        • Fitz Nicholas F.
        • Lefterov Iliya
        • Barchowsky Aaron
        • Koldamova Radosveta
        • Ambrosio Fabrisia
        Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles.
        Nat Aging. 2021; 1: 1148-1161
        • Ghosh A.K.
        • O'Brien M.
        • Mau T.
        • Qi N.
        • Yung R.
        Adipose tissue senescence and inflammation in aging is reversed by the young milieu.
        J Gerontol A Biol Sci Med Sci. 2019; 74: 1709-1715