Advertisement

Fyn deficiency inhibits oxidative stress by decreasing c-Cbl-mediated ubiquitination of Sirt1 to attenuate diabetic renal fibrosis

Published:December 17, 2022DOI:https://doi.org/10.1016/j.metabol.2022.155378

      Highlights

      • This study reported the role of Fyn in diabetic nephropathy (DN).
      • We proposed Fyn as a potential therapeutic target against DN.
      • Fyn deficiency exerted antioxidant effects by activating the Sirt1/Foxo3a pathway.
      • Fyn facilitated the bond of c-Cbl and Sirt1 by phosphorylation at Tyr731 of c-Cbl.
      • c-Cbl promoted K48-linked polyubiquitination at Lys377 and Lys513 of Sirt1.

      Abstract

      Objective

      Oxidative stress (OS) is the main cause leading to diabetic renal fibrosis. Recently, Fyn was paid much attention on OS and emerged as a pivotal player in acute kidney injury, while whether Fyn regulates oxidative stress in chronic diabetes nephropathy (DN) has not been clarified yet. The purpose of this study was to identify the role of Fyn in DN and elucidated its regulatory mechanism.

      Methods

      The db/db mice and littermate control C57BKS/J mice were injected by tail vein with Fyn interfering adenovirus or Fyn overexpressing adenovirus to investigate the role of Fyn in vivo. Primary glomerular mesangial cells (GMCs) were used for in vitro studies.

      Results

      Fyn was up-regulated in high glucose (HG)-induced GMCs and kidneys of diabetic mice. Additionally, Fyn knockdown reduced the level of OS in HG-induced GMCs and kidneys of diabetic mice, thereby ameliorating diabetic renal fibrosis. While overexpression of Fyn significantly increased the level of OS in GMCs and kidney tissues, resulting in renal damage. Moreover, Fyn deficiency exerted antioxidant effects by activating the Sirt1/Foxo3a pathway. Mechanistically, Fyn facilitated the combination of c-Cbl and Sirt1 by phosphorylating c-Cbl at Tyr731, which triggered K48-linked polyubiquitination of Sirt1 at Lys377 and Lys513 by c-Cbl and promoted Sirt1 degradation, impairing the antioxidant effects of Foxo3a.

      Conclusions

      Fyn deficiency promoted Foxo3a nuclear transcription via reducing the ubiquitination of Sirt1 by c-Cbl, thereby alleviating renal oxidative damage in diabetic mice. These results identified Fyn as a potential therapeutic target against DN.

      Abbreviations:

      24 h UP (24-h urine protein), BUN (blood urea nitrogen), CHX (Cycloheximide), Cr (serum creatinine), DHE (Dihydroethidium), DN (diabetic nephropathy), ECM (extracellular matrix), FBG (fasting blood glucose), FN (fibronectin), GMCs (glomerular mesangial cells), GSP (glycated serum protein), HE (hematoxylin-eosin), HEK (Human embryonic kidney), HG (high glucose), ICAM-1 (intercellular cell adhesion molecular-1), IF (immunofluorescence), IHC (immunohistochemistry), IP (immunoprecipitation), KW/BW (renal weight/body weight ratio), LPO (lipid peroxide), MDA (malondialdehyde), NAC (N-Acetyl-L-cysteine), NC (negative control), NG (normal glucose), OS (oxidative stress), PAS (Periodic Acid-Schiff), ROS (reactive oxygen species), SD (Sprague-Dawley), Si-RNA (small interfering RNA), SOD (superoxide dismutase), SPF (specific pathogen-free)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tervaert T.W.C.
        • Mooyaart A.L.
        • Amann K.
        • et al.
        Pathologic classification of diabetic nephropathy [J].
        J Am Soc Nephrol. 2010; 21: 556-563https://doi.org/10.1681/asn.2010010010
        • Ginley B.
        • Lutnick B.
        • Jen K.-Y.
        • et al.
        Computational segmentation and classification of diabetic glomerulosclerosis [J].
        J Am Soc Nephrol. 2019; 30: 1953-1967https://doi.org/10.1681/asn.2018121259
        • Du L.
        • Wang L.
        • Wang B.
        • et al.
        A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling [J].
        Acta Pharmacol Sin. 2020; 41: 358-372https://doi.org/10.1038/s41401-019-0297-6
        • Hu C.
        • Sun L.
        • Xiao L.
        • et al.
        Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy [J].
        Curr Med Chem. 2015; 22: 2858-2870https://doi.org/10.2174/0929867322666150625095407
        • Gong W.
        • Chen Z.
        • Zou Y.
        • et al.
        CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 via mediating Smurf1 to resist HG-induced renal fibrosis in GMCs and diabetic mice kidneys [J].
        Free Radic Biol Med. 2018; 115: 338-350https://doi.org/10.1016/j.freeradbiomed.2017.12.013
        • Jiang W.
        • Wang R.
        • Liu D.
        • et al.
        Protective effects of kaempferitrin on advanced glycation end products induce mesangial cell apoptosis and oxidative stress [J].
        Int J Mol Sci. 2018; 19https://doi.org/10.3390/ijms19113334
        • Calautti E.
        • Grossi M.
        • Dotto G.
        Fyn tyrosine kinase is a downstream mediator of Rho/PRK2 function in keratinocyte cell-cell adhesion [J].
        J Invest Dermatol. 2002; 119: 279-
        • Seo H.-Y.
        • Jeon J.-H.
        • Jung Y.-A.
        • et al.
        Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3 [J].
        Kidney Int. 2016; 90: 1285-1297https://doi.org/10.1016/j.kint.2016.06.038
        • Beneduce E.
        • Matte A.
        • de Falco L.
        • et al.
        Fyn kinase is a novel modulator of erythropoietin signaling and stress erythropoiesis [J].
        Am J Hematol. 2019; 94: 10-20https://doi.org/10.1002/ajh.25295
        • Li W.
        • Febbraio M.
        • Reddy S.P.
        • et al.
        CD36 participates in a signaling pathway that regulates ROS formation in murine VSMCs [J].
        J Clin Invest. 2010; 120: 3996-4006https://doi.org/10.1172/jci42823
        • Anuranjani
        • Bala M.
        Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - Implication in modification of radiation damage [J].
        Redox biology. 2014; 2: 832-846https://doi.org/10.1016/j.redox.2014.02.008
        • Kim J.E.
        • Roh E.
        • Lee M.H.
        • et al.
        Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis [J].
        Oncogene. 2016; 35: 4091-4101https://doi.org/10.1038/onc.2015.471
        • Uddin M.J.
        • Jeong J.
        • Pak E.S.
        • et al.
        CO-releasing Molecule-2 prevents acute kidney injury through suppression of ROS-fyn-ER stress signaling in mouse model [J].
        Oxid Med Cell Longev. 2021; 2021: 9947772https://doi.org/10.1155/2021/9947772
        • Dorotea D.
        • Jiang S.
        • Pak E.S.
        • et al.
        Pan-src kinase inhibitor treatment attenuates diabetic kidney injury via inhibition of Fyn kinase-mediated endoplasmic reticulum stress [J].
        Exp Mol Med. 2022; 54: 1086-1097https://doi.org/10.1038/s12276-022-00810-3
        • Kumawat M.
        • Sharma T.K.
        • Singh I.
        • et al.
        Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy [J].
        N Am J Med Sci. 2013; 5: 213-219https://doi.org/10.4103/1947-2714.109193
        • Kotake M.
        • Shinohara R.
        • Kato K.
        • et al.
        Reduction of activity, but no decrease in concentration, of erythrocyte cu, zn-superoxide dismutase by hyperglycaemia in diabetic patients [J].
        Diabet Med. 1998; 15: 668-671https://doi.org/10.1002/(sici)1096-9136(199808)15:8<668::Aid-dia650>3.0.Co;2-9
        • Chen H.
        • Hu X.
        • Yang R.
        • et al.
        SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH)(2)D deficiency [J].
        Int J Biol Sci. 2020; 16: 2712-2726https://doi.org/10.7150/ijbs.48169
        • Zhao Y.
        • Jiang Q.
        • Zhang X.
        • et al.
        l-arginine alleviates LPS-induced oxidative stress and apoptosis via activating SIRT1-AKT-Nrf2 and SIRT1-FOXO3a signaling pathways in C2C12 myotube cells [J].
        Antioxidants (Basel, Switzerland). 2021; 10https://doi.org/10.3390/antiox10121957
        • Cantó C.
        • Gerhart-Hines Z.
        • Feige J.N.
        • et al.
        AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity [J].
        Nature. 2009; 458: 1056-1060https://doi.org/10.1038/nature07813
        • Sun W.
        • Qiao W.
        • Zhou B.
        • et al.
        Overexpression of Sirt1 in mesenchymal stem cells protects against bone loss in mice by FOXO3a deacetylation and oxidative stress inhibition [J].
        Metabolism. 2018; 88: 61-71https://doi.org/10.1016/j.metabol.2018.06.006
        • Kim M.Y.
        • Lim J.H.
        • Youn H.H.
        • et al.
        Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice [J].
        Diabetologia. 2013; 56: 204-217https://doi.org/10.1007/s00125-012-2747-2
        • Nath K.A.
        The role of Sirt1 in renal rejuvenation and resistance to stress [J].
        J Clin Invest. 2010; 120: 1026-1028https://doi.org/10.1172/jci42184
        • Noble M.
        • Mayer-Proeschel M.
        • Li Z.
        • et al.
        Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-cbl pathway in cancer cells offers new approaches to cancer treatment [J].
        Free Radic Biol Med. 2015; 79: 300-323https://doi.org/10.1016/j.freeradbiomed.2014.10.860
        • Chen H.Y.
        • Yang Y.M.
        • Stevens B.M.
        • et al.
        Inhibition of redox/Fyn/c-cbl pathway function by Cdc42 controls tumour initiation capacity and tamoxifen sensitivity in basal-like breast cancer cells [J].
        EMBO Mol Med. 2013; 5: 723-736https://doi.org/10.1002/emmm.201202140
        • Li Z.
        • Dong T.
        • Proschel C.
        • et al.
        Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function [J].
        PLoS Biol. 2007; 5: 212-231https://doi.org/10.1371/journal.pbio.0050035
        • Tanaka S.
        • Neff L.
        • Baron R.
        • et al.
        Tyrosine phosphorylation and translocation of the c-cbl protein after activation of tyrosine kinase signaling pathways [J].
        J Biol Chem. 1995; 270: 14347-14351https://doi.org/10.1074/jbc.270.24.14347
        • Geoffroy K.
        • Wiernsperger N.
        • Lagarde M.
        • et al.
        Bimodal effect of advanced glycation end products on mesangial cell proliferation is mediated by neutral ceramidase regulation and endogenous sphingolipids [J].
        J Biol Chem. 2004; 279: 34343-34352https://doi.org/10.1074/jbc.M403273200
        • Abdul Rehman S.A.
        • Armstrong L.A.
        • Lange S.M.
        • et al.
        Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2 [J].
        Mol Cell. 2021; 81 (e6): 4176-4190https://doi.org/10.1016/j.molcel.2021.08.024
        • Hershko A.
        • Ciechanover A.
        The ubiquitin system [J].
        Annu Rev Biochem. 1998; 67: 425-479https://doi.org/10.1146/annurev.biochem.67.1.425
        • Lin Z.
        • Yang H.
        • Kong Q.
        • et al.
        USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development [J].
        Mol Cell. 2012; 46: 484-494https://doi.org/10.1016/j.molcel.2012.03.024
        • Hunter S.
        • Burton E.A.
        • Wu S.C.
        • et al.
        Fyn associates with cbl and phosphorylates tyrosine 731 in cbl, a binding site for phosphatidylinositol 3-kinase [J].
        J Biol Chem. 1999; 274: 2097-2106https://doi.org/10.1074/jbc.274.4.2097
        • Shivanna S.
        • Harrold I.
        • Shashar M.
        • et al.
        The c-cbl ubiquitin ligase regulates nuclear β-catenin and angiogenesis by its tyrosine phosphorylation mediated through the wnt signaling pathway [J].
        J Biol Chem. 2015; 290: 12537-12546https://doi.org/10.1074/jbc.M114.616623
        • Comba A.
        • Dunn P.J.
        • Argento A.E.
        • et al.
        Fyn tyrosine kinase, a downstream target of receptor tyrosine kinases, modulates antiglioma immune responses [J].
        Neuro Oncol. 2020; 22: 806-818https://doi.org/10.1093/neuonc/noaa006
        • Saito Y.D.
        • Jensen A.R.
        • Salgia R.
        • et al.
        Fyn: a novel molecular target in cancer [J].
        Cancer. 2010; 116: 1629-1637https://doi.org/10.1002/cncr.24879
        • Mkaddem S.B.
        • Murua A.
        • Flament H.
        • et al.
        Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation [J].
        Nat Commun. 2017; 8: 246https://doi.org/10.1038/s41467-017-00294-0
        • Nygaard H.B.
        Targeting Fyn kinase in Alzheimer's disease [J].
        Biol Psychiatry. 2018; 83: 369-376https://doi.org/10.1016/j.biopsych.2017.06.004
        • Uddin M.J.
        • Dorotea D.
        • Pak E.S.
        • et al.
        Fyn kinase: a potential therapeutic target in acute kidney injury [J].
        Biomol Ther (Seoul). 2020; 28: 213-221https://doi.org/10.4062/biomolther.2019.214
        • Cheng Y.
        • Zhang X.
        • Ma F.
        • et al.
        The role of Akt2 in the protective effect of fenofibrate against diabetic nephropathy [J].
        Int J Biol Sci. 2020; 16: 553-567https://doi.org/10.7150/ijbs.40643
        • Seo H.Y.
        • Jeon J.H.
        • Jung Y.A.
        • et al.
        Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3 [J].
        Kidney Int. 2016; 90: 1285-1297https://doi.org/10.1016/j.kint.2016.06.038
        • Du L.
        • Wang L.
        • Wang B.
        • et al.
        A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling [J].
        Acta Pharmacol Sin. 2020; 41: 358-372https://doi.org/10.1038/s41401-019-0297-6
        • Samadi M.
        • Aziz S.G.
        • Naderi R.
        The effect of tropisetron on oxidative stress, SIRT1, FOXO3a, and claudin-1 in the renal tissue of STZ-induced diabetic rats [J].
        Cell Stress Chaperones. 2021; 26: 217-227https://doi.org/10.1007/s12192-020-01170-5
        • Wang X.
        • Meng L.
        • Zhao L.
        • et al.
        Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway [J].
        Diabetes Res Clin Pract. 2017; 126: 172-181https://doi.org/10.1016/j.diabres.2016.12.005
        • Huang K.P.
        • Chen C.
        • Hao J.
        • et al.
        AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-β1 expression in male rat glomerular mesangial cells [J].
        Endocrinology. 2015; 156: 268-279https://doi.org/10.1210/en.2014-1381
        • Shen T.
        • Cai L.D.
        • Liu Y.H.
        • et al.
        Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy [J].
        J Hematol Oncol. 2018; 11: 95https://doi.org/10.1186/s13045-018-0638-9
        • Lin Z.
        • Yang H.
        • Kong Q.
        • et al.
        USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development [J].
        Mol Cell. 2012; 46: 484-494https://doi.org/10.1016/j.molcel.2012.03.024
        • Ahern C.A.
        • Zhang J.F.
        • Wookalis M.J.
        • et al.
        Modulation of the cardiac sodium channel NaV1.5 by Fyn, a src family tyrosine kinase [J].
        Circ Res. 2005; 96: 991-998https://doi.org/10.1161/01.RES.0000166324.00524.dd
        • Rafiq K.
        • Kolpakov M.A.
        • Seqqat R.
        • et al.
        C-cbl inhibition improves cardiac function and survival in response to myocardial ischemia [J].
        Circulation. 2014; 129: 2031-2043https://doi.org/10.1161/circulationaha.113.007004
        • Duan J.L.
        • He H.Q.
        • Yu Y.
        • et al.
        E3 ligase c-cbl regulates intestinal inflammation through suppressing fungi-induced noncanonical NF-κB activation [J].
        Sci Adv. 2021; 7https://doi.org/10.1126/sciadv.abe5171
        • Tanaka S.
        • Neff L.
        • Baron R.
        • et al.
        Tyrosine phosphorylation and translocation of the c-cbl protein after activation of tyrosine kinase signaling pathways [J].
        J Biol Chem. 1995; 270: 14347-14351https://doi.org/10.1074/jbc.270.24.14347
        • Nogueiras R.
        • Habegger K.M.
        • Chaudhary N.
        • et al.
        Sirtuin 1 and sirtuin 3: physiological modulators of metabolism [J].
        Physiol Rev. 2012; 92: 1479-1514https://doi.org/10.1152/physrev.00022.2011
        • Li Z.
        • Dong T.
        • Pröschel C.
        • et al.
        Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function [J].
        PLoS Biol. 2007; 5e35https://doi.org/10.1371/journal.pbio.0050035
        • Noble M.
        • Mayer-Pröschel M.
        • Li Z.
        • et al.
        Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment [J].
        Free Radic Biol Med. 2015; 79: 300-323https://doi.org/10.1016/j.freeradbiomed.2014.10.860
        • Yang S.
        • Zhao L.
        • Han Y.
        • et al.
        Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc [J].
        Redox Biol. 2017; 13: 482-497https://doi.org/10.1016/j.redox.2017.07.002
        • Liao Z.
        • Zhang J.
        • Wang J.
        • et al.
        The anti-nephritic activity of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) via modulation of AMPK-Sirt1-PGC-1α signaling axis mediated anti-oxidative in type 2 diabetes model mice [J].
        Int J Biol Macromol. 2019; 140: 568-576https://doi.org/10.1016/j.ijbiomac.2019.08.149
        • Heppner D.E.
        • Dustin C.M.
        • Liao C.
        • et al.
        Direct cysteine sulfenylation drives activation of the src kinase [J].
        Nat Commun. 2018; 9: 4522https://doi.org/10.1038/s41467-018-06790-1
        • Hannon R.A.
        • Clack G.
        • Rimmer M.
        • et al.
        Effects of the src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: a randomized, double-blind, placebo-controlled, multiple-ascending-dose phase I trial [J].
        J Bone Miner Res. 2010; 25: 463-471https://doi.org/10.1359/jbmr.090830
        • Tokarski J.S.
        • Newitt J.A.
        • Chang C.Y.
        • et al.
        The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants [J].
        Cancer Res. 2006; 66: 5790-5797https://doi.org/10.1158/0008-5472.Can-05-4187
        • Kreutzman A.
        • Ladell K.
        • Koechel C.
        • et al.
        Expansion of highly differentiated CD8+ T-cells or NK-cells in patients treated with dasatinib is associated with cytomegalovirus reactivation [J].
        Leukemia. 2011; 25: 1587-1597https://doi.org/10.1038/leu.2011.135