Advertisement

Adipose tissue adipokines and lipokines: Functions and regulatory mechanism in skeletal muscle development and homeostasis

Published:December 16, 2022DOI:https://doi.org/10.1016/j.metabol.2022.155379

      Highlights

      • Adipokines and lipokines mediate crosstalk between adipose and skeletal muscle.
      • Adipokines and lipokines regulate skeletal muscle development and homeostasis.
      • Adipokines and lipokines may have potential in human health and animal production.

      Abstract

      Skeletal muscle plays important roles in normal biological activities and whole-body energy homeostasis in humans. The growth and development of skeletal muscle also directly influence meat production and meat quality in animal production. Therefore, regulating the development and homeostasis of skeletal muscle is crucial for human health and animal production. Adipose tissue, which includes white adipose tissue (WAT) and brown adipose tissue (BAT), not only functions as an energy reserve but also has attracted substantial attention because of its role as an endocrine organ. The novel signalling molecules known as “adipokines” and “lipokines” that are secreted by adipose tissue were identified through the secretomic technique, which broadened our understanding of the previously unknown crosstalk between adipose tissue and skeletal muscle. In this review, we summarize and discuss the secretory role of adipose tissues, both WAT and BAT, as well as the regulatory roles of various adipokines and lipokines in skeletal muscle development and homeostasis. We suggest that adipokines and lipokines have potential as drug candidates for the treatment of skeletal muscle dysfunction and related metabolic diseases and as promising nutrients for improving animal production.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Giordani L.
        • He G.J.
        • Negroni E.
        • Sakai H.
        • Law J.
        • Siu M.M.
        • Wan R.
        • Corneau A.
        • Tajbakhsh S.
        • Cheung T.H.
        • Le Grand F.
        High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations.
        Mol Cell. 2019; 74: 609-621https://doi.org/10.1016/j.molcel.2019.02.026
        • Tieland M.
        • Trouwborst I.
        • Clark B.C.
        Skeletal muscle performance and ageing.
        J Cachexia Sarcopenia Muscle. 2018; 9: 3-19https://doi.org/10.1002/jcsm.12238
        • Listrat A.
        • Lebret B.
        • Louveau I.
        • Astruc T.
        • Bonnet M.
        • Lefaucheur L.
        • Picard B.
        • Bugeon J.
        How muscle structure and composition influence meat and flesh quality.
        ScientificWorldJournal. 2016; 2016: 3182746https://doi.org/10.1155/2016/3182746
        • Matarneh S.K.
        • Silva S.L.
        • Gerrard D.E.
        New insights in muscle biology that alter meat quality.
        Annu Rev Anim Biosci. 2021; 9: 355-377https://doi.org/10.1146/annurev-animal-021419-083902
        • Severinsen M.
        • Pedersen B.K.
        Muscle-organ crosstalk: the emerging roles of myokines.
        Endocr Rev. 2020; : 41https://doi.org/10.1210/endrev/bnaa016
        • Chen W.
        • Wang L.
        • You W.
        • Shan T.
        Myokines mediate the cross talk between skeletal muscle and other organs.
        J Cell Physiol. 2021; 236: 2393-2412https://doi.org/10.1002/jcp.30033
        • Chen B.
        • You W.
        • Wang Y.
        • Shan T.
        The regulatory role of myomaker and myomixer-myomerger-minion in muscle development and regeneration.
        Cell Mol Life Sci. 2020; 77: 1551-1569https://doi.org/10.1007/s00018-019-03341-9
        • Shan T.
        • Xu Z.
        • Liu J.
        • Wu W.
        • Wang Y.
        Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis.
        J Cell Physiol. 2017; 232: 2653-2656https://doi.org/10.1002/jcp.25786
        • Wang L.
        • Xu Z.
        • Ling D.
        • Li J.
        • Wang Y.
        • Shan T.
        The regulatory role of dietary factors in skeletal muscle development, regeneration and function.
        Crit Rev Food Sci Nutr. 2022; 62: 764-782https://doi.org/10.1080/10408398.2020.1828812
        • McGlory C.
        • van Vliet S.
        • Stokes T.
        • Mittendorfer B.
        • Phillips S.M.
        The impact of exercise and nutrition on the regulation of skeletal muscle mass.
        J Physiol. 2019; 597: 1251-1258https://doi.org/10.1113/JP275443
        • Rodriguez A.
        • Becerril S.
        • Hernandez-Pardos A.W.
        • Fruhbeck G.
        Adipose tissue depot differences in adipokines and effects on skeletal and cardiac muscle.
        Curr Opin Pharmacol. 2020; 52: 1-8https://doi.org/10.1016/j.coph.2020.04.003
        • Gavalda-Navarro A.
        • Villarroya J.
        • Cereijo R.
        • Giralt M.
        • Villarroya F.
        The endocrine role of brown adipose tissue: an update on actors and actions.
        Rev Endocr Metab Disord. 2022; 23: 31-41https://doi.org/10.1007/s11154-021-09640-6
        • Caron A.
        • Lee S.
        • Elmquist J.K.
        • Gautron L.
        Leptin and brain-adipose crosstalks.
        Nat Rev Neurosci. 2018; 19: 153-165https://doi.org/10.1038/nrn.2018.7
        • Fang H.
        • Judd R.L.
        Adiponectin regulation and function.
        Compr Physiol. 2018; 8: 1031-1063https://doi.org/10.1002/cphy.c170046
        • Pereira S.
        • Cline D.L.
        • Glavas M.M.
        • Covey S.D.
        • Kieffer T.J.
        Tissue-specific effects of leptin on glucose and lipid metabolism.
        Endocr Rev. 2021; 42: 1-28https://doi.org/10.1210/endrev/bnaa027
        • Macedo A.
        • Munoz V.R.
        • Cintra D.E.
        • Pauli J.R.
        12,13-diHOME as a new therapeutic target for metabolic diseases.
        Life Sci. 2022; 290120229https://doi.org/10.1016/j.lfs.2021.120229
        • Frigolet M.E.
        • Gutierrez-Aguilar R.
        The role of the novel lipokine palmitoleic acid in health and disease.
        Adv Nutr. 2017; 8: 173S-181Shttps://doi.org/10.3945/an.115.011130
        • Leiria L.O.
        • Tseng Y.H.
        Lipidomics of brown and white adipose tissue: implications for energy metabolism.
        Biochim Biophys Acta Mol Cell Biol Lipids. 2020; 1865158788https://doi.org/10.1016/j.bbalip.2020.158788
        • Li V.L.
        • Kim J.T.
        • Long J.Z.
        Adipose tissue lipokines: recent progress and future directions.
        Diabetes. 2020; 69: 2541-2548https://doi.org/10.2337/dbi20-0012
        • Thomou T.
        • Mori M.A.
        • Dreyfuss J.M.
        • Konishi M.
        • Sakaguchi M.
        • Wolfrum C.
        • Rao T.N.
        • Winnay J.N.
        • Garcia-Martin R.
        • Grinspoon S.K.
        • Gorden P.
        • Kahn C.R.
        Adipose-derived circulating miRNAs regulate gene expression in other tissues.
        Nature. 2017; 542: 450-455https://doi.org/10.1038/nature21365
        • Ugwoke C.K.
        • Cvetko E.
        • Umek N.
        Skeletal muscle microvascular dysfunction in obesity-related insulin resistance: pathophysiological mechanisms and therapeutic perspectives.
        Int J Mol Sci. 2022; : 23https://doi.org/10.3390/ijms23020847
        • Eshima H.
        Influence of obesity and type 2 diabetes on calcium handling by skeletal muscle: spotlight on the sarcoplasmic reticulum and mitochondria.
        Front Physiol. 2021; 12758316https://doi.org/10.3389/fphys.2021.758316
        • Trayhurn P.
        • Drevon C.A.
        • Eckel J.
        Secreted proteins from adipose tissue and skeletal muscle - adipokines, myokines and adipose/muscle cross-talk.
        Arch Physiol Biochem. 2011; 117: 47-56https://doi.org/10.3109/13813455.2010.535835
        • Kahn C.R.
        • Wang G.
        • Lee K.Y.
        Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome.
        J Clin Invest. 2019; 129: 3990-4000https://doi.org/10.1172/JCI129187
        • Fasshauer M.
        • Bluher M.
        Adipokines in health and disease.
        Trends Pharmacol Sci. 2015; 36: 461-470https://doi.org/10.1016/j.tips.2015.04.014
        • Ouchi N.
        • Parker J.L.
        • Lugus J.J.
        • Walsh K.
        Adipokines in inflammation and metabolic disease.
        Nat Rev Immunol. 2011; 11: 85-97https://doi.org/10.1038/nri2921
        • Villarroya F.
        • Gavalda-Navarro A.
        • Peyrou M.
        • Villarroya J.
        • Giralt M.
        The lives and times of brown adipokines.
        Trends Endocrinol Metab. 2017; 28: 855-867https://doi.org/10.1016/j.tem.2017.10.005
        • Villarroya F.
        • Cereijo R.
        • Villarroya J.
        • Giralt M.
        Brown adipose tissue as a secretory organ.
        Nat Rev Endocrinol. 2017; 13: 26-35https://doi.org/10.1038/nrendo.2016.136
        • Villarroya J.
        • Cereijo R.
        • Gavalda-Navarro A.
        • Peyrou M.
        • Giralt M.
        • Villarroya F.
        New insights into the secretory functions of brown adipose tissue.
        J Endocrinol. 2019; 243: R19-R27https://doi.org/10.1530/JOE-19-0295
        • Whitehead A.
        • Krause F.N.
        • Moran A.
        • MacCannell A.D.V.
        • Scragg J.L.
        • McNally B.D.
        • Boateng E.
        • Murfitt S.A.
        • Virtue S.
        • Wright J.
        • Garnham J.
        • Davies G.R.
        • Dodgson J.
        • Schneider J.E.
        • Murray A.J.
        • Church C.
        • Vidal-Puig A.
        • Witte K.K.
        • Griffin J.L.
        • Roberts L.D.
        Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis.
        Nat Commun. 2021; : 12https://doi.org/10.1038/s41467-021-22272-3
        • Ahmad B.
        • Vohra M.S.
        • Saleemi M.A.
        • Serpell C.J.
        • Fong I.L.
        • Wong E.H.
        Brown/beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: the batokines.
        Biochimie. 2021; 184: 26-39https://doi.org/10.1016/j.biochi.2021.01.015
        • Zhao S.
        • Kusminski C.M.
        • Scherer P.E.
        Adiponectin, leptin and cardiovascular disorders.
        Circ Res. 2021; 128: 136-149https://doi.org/10.1161/CIRCRESAHA.120.314458
        • Fang H.
        • Judd R.L.
        Adiponectin regulation and function.
        Compr Physiol. 2018; 8: 1031-1063https://doi.org/10.1002/cphy.c170046
        • Pereira S.
        • Cline D.L.
        • Glavas M.M.
        • Covey S.D.
        • Kieffer T.J.
        Tissue-specific effects of leptin on glucose and lipid metabolism.
        Endocr Rev. 2021; 42: 1-28https://doi.org/10.1210/endrev/bnaa027
        • Helfer G.
        • Wu Q.F.
        Chemerin: a multifaceted adipokine involved in metabolic disorders.
        J Endocrinol. 2018; 238: R79-R94https://doi.org/10.1530/JOE-18-0174
        • Zelechowska P.
        • Brzezinska-Blaszczyk E.
        • Kusowska A.
        • Kozlowska E.
        The role of adipokines in the modulation of lymphoid lineage cell development and activity: an overview.
        Obes Rev. 2020; 21e13055https://doi.org/10.1111/obr.13055
        • Li F.
        • Li Y.
        • Duan Y.
        • Hu C.A.
        • Tang Y.
        • Yin Y.
        Myokines and adipokines: involvement in the crosstalk between skeletal muscle and adipose tissue.
        Cytokine Growth Factor Rev. 2017; 33: 73-82https://doi.org/10.1016/j.cytogfr.2016.10.003
        • Wang T.
        • He C.
        Pro-inflammatory cytokines: the link between obesity and osteoarthritis.
        Cytokine Growth Factor Rev. 2018; 44: 38-50https://doi.org/10.1016/j.cytogfr.2018.10.002
        • Kirk B.
        • Feehan J.
        • Lombardi G.
        • Duque G.
        Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines.
        Curr Osteoporos Rep. 2020; 18: 388-400https://doi.org/10.1007/s11914-020-00599-y
        • Fukuhara A.
        • Matsuda M.
        • Nishizawa M.
        • Segawa K.
        • Tanaka M.
        • Kishimoto K.
        • Matsuki Y.
        • Murakami M.
        • Ichisaka T.
        • Murakami H.
        • Watanabe E.
        • Takagi T.
        • Akiyoshi M.
        • Ohtsubo T.
        • Kihara S.
        • Yamashita S.
        • Makishima M.
        • Funahashi T.
        • Yamanaka S.
        • Hiramatsu R.
        • Matsuzawa Y.
        • Shimomura I.
        Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.
        Science. 2005; 307: 426-430https://doi.org/10.1126/science.1097243
        • Shokrollahi B.
        • Shang J.H.
        • Saadati N.
        • Ahmad H.I.
        • Yang C.Y.
        Reproductive roles of novel adipokines apelin, visfatin, and irisin in farm animals.
        Theriogenology. 2021; 172: 178-186https://doi.org/10.1016/j.theriogenology.2021.06.011
        • Hui X.
        • Feng T.
        • Liu Q.
        • Gao Y.
        • Xu A.
        The FGF21-adiponectin axis in controlling energy and vascular homeostasis.
        J Mol Cell Biol. 2016; 8: 110-119https://doi.org/10.1093/jmcb/mjw013
        • Blazquez-Medela A.M.
        • Jumabay M.
        • Bostrom K.I.
        Beyond the bone: bone morphogenetic protein signaling in adipose tissue.
        Obes Rev. 2019; 20: 648-658https://doi.org/10.1111/obr.12822
        • Geissler A.
        • Ryzhov S.
        • Sawyer D.B.
        Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease.
        Clin Sci (Lond). 2020; 134: 2623-2643https://doi.org/10.1042/CS20200230
        • Stanford K.I.
        • Lynes M.D.
        • Takahashi H.
        • Baer L.A.
        • Arts P.J.
        • May F.J.
        • Lehnig A.C.
        • Middelbeek R.
        • Richard J.J.
        • So K.
        • Chen E.Y.
        • Gao F.
        • Narain N.R.
        • Distefano G.
        • Shettigar V.K.
        • Hirshman M.F.
        • Ziolo M.T.
        • Kiebish M.A.
        • Tseng Y.H.
        • Coen P.M.
        • Goodyear L.J.
        12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake.
        Cell Metab. 2018; 27: 1111-1120https://doi.org/10.1016/j.cmet.2018.03.020
        • Leiria L.O.
        • Wang C.H.
        • Lynes M.D.
        • Yang K.
        • Shamsi F.
        • Sato M.
        • Sugimoto S.
        • Chen E.Y.
        • Bussberg V.
        • Narain N.R.
        • Sansbury B.E.
        • Darcy J.
        • Huang T.L.
        • Kodani S.D.
        • Sakaguchi M.
        • Rocha A.L.
        • Schulz T.J.
        • Bartelt A.
        • Hotamisligil G.S.
        • Hirshman M.F.
        • van Leyen K.
        • Goodyear L.J.
        • Bluher M.
        • Cypess A.M.
        • Kiebish M.A.
        • Spite M.
        • Tseng Y.H.
        12-Lipoxygenase regulates cold adaptation and glucose metabolism by producing the Omega-3 lipid 12-HEPE from brown fat.
        Cell Metab. 2019; 30: 768-783https://doi.org/10.1016/j.cmet.2019.07.001
        • Saika A.
        • Nagatake T.
        • Hirata S.I.
        • Sawane K.
        • Adachi J.
        • Abe Y.
        • Isoyama J.
        • Morimoto S.
        • Node E.
        • Tiwari P.
        • Hosomi K.
        • Matsunaga A.
        • Honda T.
        • Tomonaga T.
        • Arita M.
        • Kabashima K.
        • Kunisawa J.
        omega3 fatty acid metabolite, 12-hydroxyeicosapentaenoic acid, alleviates contact hypersensitivity by downregulation of CXCL1 and CXCL2 gene expression in keratinocytes via retinoid X receptor alpha.
        FASEB J. 2021; 35e21354https://doi.org/10.1096/fj.202001687R
        • Brejchova K.
        • Balas L.
        • Paluchova V.
        • Brezinova M.
        • Durand T.
        • Kuda O.
        Understanding FAHFAs: from structure to metabolic regulation.
        Prog Lipid Res. 2020; 79101053https://doi.org/10.1016/j.plipres.2020.101053
        • Hernandez-Saavedra D.
        • Stanford K.I.
        The regulation of lipokines by environmental factors.
        Nutrients. 2019; : 11https://doi.org/10.3390/nu11102422
        • Zhou Y.
        • Little P.J.
        • Ta H.T.
        • Xu S.
        • Kamato D.
        Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease.
        Pharmacol Ther. 2019; 204107404https://doi.org/10.1016/j.pharmthera.2019.107404
        • Kim S.J.
        • Howe C.
        • Mitchell J.
        • Choo J.
        • Powers A.
        • Oikonomopoulos A.
        • Pothoulakis C.
        • Hommes D.W.
        • Im E.
        • Rhee S.H.
        Autotaxin loss accelerates intestinal inflammation by suppressing TLR4-mediated immune responses.
        EMBO Rep. 2020; 21e49332https://doi.org/10.15252/embr.201949332
        • M'Hiri I.
        • Diaguarachchige D.S.K.
        • Duncan R.E.
        Relative expression and regulation by short-term fasting of lysophosphatidic acid receptors and autotaxin in white and brown adipose tissue depots.
        Lipids. 2020; 55: 279-284https://doi.org/10.1002/lipd.12224
        • Ray R.
        • Sinha S.
        • Aidinis V.
        • Rai V.
        Atx regulates skeletal muscle regeneration via LPAR1 and promotes hypertrophy.
        Cell Rep. 2021; 34108809https://doi.org/10.1016/j.celrep.2021.108809
        • Cook K.S.
        • Min H.Y.
        • Johnson D.
        • Chaplinsky R.J.
        • Flier J.S.
        • Hunt C.R.
        • Spiegelman B.M.
        Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve.
        Science. 1987; 237: 402-405https://doi.org/10.1126/science.3299705
        • Zhang Y.
        • Proenca R.
        • Maffei M.
        • Barone M.
        • Leopold L.
        • Friedman J.M.
        Positional cloning of the mouse obese gene and its human homologue.
        Nature. 1994; 372: 425-432https://doi.org/10.1038/372425a0
        • Nicholson T.
        • Church C.
        • Baker D.J.
        • Jones S.W.
        The role of adipokines in skeletal muscle inflammation and insulin sensitivity.
        J Inflamm. 2018; 15 (Lond): 9https://doi.org/10.1186/s12950-018-0185-8
        • Koo Y.D.
        • Lee J.S.
        • Lee S.A.
        • Quaresma P.
        • Bhat R.
        • Haynes W.G.
        • Park Y.J.
        • Kim Y.B.
        • Chung S.S.
        • Park K.S.
        SUMO-specific protease 2 mediates leptin-induced fatty acid oxidation in skeletal muscle.
        Metabolism. 2019; 95: 27-35https://doi.org/10.1016/j.metabol.2019.03.004
        • Abou-Samra M.
        • Selvais C.M.
        • Dubuisson N.
        • Brichard S.M.
        Adiponectin and its mimics on skeletal muscle: insulin sensitizers, fat burners, exercise mimickers, muscling pills ... or everything together?.
        Int J Mol Sci. 2020; : 21https://doi.org/10.3390/ijms21072620
        • Lin Z.
        • Tian H.
        • Lam K.S.
        • Lin S.
        • Hoo R.C.
        • Konishi M.
        • Itoh N.
        • Wang Y.
        • Bornstein S.R.
        • Xu A.
        • Li X.
        Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice.
        Cell Metab. 2013; 17: 779-789https://doi.org/10.1016/j.cmet.2013.04.005
        • Iwabu M.
        • Yamauchi T.
        • Okada-Iwabu M.
        • Sato K.
        • Nakagawa T.
        • Funata M.
        • Yamaguchi M.
        • Namiki S.
        • Nakayama R.
        • Tabata M.
        • Ogata H.
        • Kubota N.
        • Takamoto I.
        • Hayashi Y.K.
        • Yamauchi N.
        • Waki H.
        • Fukayama M.
        • Nishino I.
        • Tokuyama K.
        • Ueki K.
        • Oike Y.
        • Ishii S.
        • Hirose K.
        • Shimizu T.
        • Touhara K.
        • Kadowaki T.
        Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1.
        Nature. 2010; 464: 1313-1319https://doi.org/10.1038/nature08991
        • Lustig Y.
        • Hemi R.
        • Kanety H.
        Regulation and function of adiponectin receptors in skeletal muscle.
        Vitam Horm. 2012; 90: 95-123https://doi.org/10.1016/B978-0-12-398313-8.00004-X
        • Kucukoglu O.
        • Sowa J.P.
        • Mazzolini G.D.
        • Syn W.K.
        • Canbay A.
        Hepatokines and adipokines in NASH-related hepatocellular carcinoma.
        J Hepatol. 2021; 74: 442-457https://doi.org/10.1016/j.jhep.2020.10.030
        • Gomez-Banoy N.
        • Lo J.C.
        Adipokines as key players in beta cell function and failure.
        Clin Sci (Lond). 2019; 133: 2317-2327https://doi.org/10.1042/CS20190523
        • Scheja L.
        • Heeren J.
        The endocrine function of adipose tissues in health and cardiometabolic disease.
        Nat Rev Endocrinol. 2019; 15: 507-524https://doi.org/10.1038/s41574-019-0230-6
        • Scheele C.
        • Wolfrum C.
        Brown adipose crosstalk in tissue plasticity and human metabolism.
        Endocr Rev. 2020; : 41https://doi.org/10.1210/endrev/bnz007
        • Buechler C.
        • Feder S.
        • Haberl E.M.
        • Aslanidis C.
        Chemerin isoforms and activity in obesity.
        Int J Mol Sci. 2019; : 20https://doi.org/10.3390/ijms20051128
        • Leniz A.
        • Gonzalez M.
        • Besne I.
        • Carr-Ugarte H.
        • Gomez-Garcia I.
        • Portillo M.P.
        Role of chemerin in the control of glucose homeostasis.
        Mol Cell Endocrinol. 2022; 541111504https://doi.org/10.1016/j.mce.2021.111504
        • Shafer-Eggleton J.
        • Adams-Huet B.
        • Jialal I.
        Chemerin ratios to HDL-cholesterol and adiponectin as biomarkers of metabolic syndrome.
        Endocr Res. 2020; 45: 241-245https://doi.org/10.1080/07435800.2020.1811724
        • Kolahdouzi S.
        • Baghadam M.
        • Kani-Golzar F.A.
        • Saeidi A.
        • Jabbour G.
        • Ayadi A.
        • De Sousa M.
        • Zouita A.
        • Abderrahmane A.B.
        • Zouhal H.
        Progressive circuit resistance training improves inflammatory biomarkers and insulin resistance in obese men.
        Physiol Behav. 2019; 205: 15-21https://doi.org/10.1016/j.physbeh.2018.11.033
        • Ormsbee M.J.
        • Choi M.D.
        • Medlin J.K.
        • Geyer G.H.
        • Trantham L.H.
        • Dubis G.S.
        • Hickner R.C.
        Regulation of fat metabolism during resistance exercise in sedentary lean and obese men.
        J Appl Physiol. 1985; 2009: 1529-1537https://doi.org/10.1152/japplphysiol.91485.2008
        • Yang H.
        • Li F.
        • Kong X.
        • Yuan X.
        • Wang W.
        • Huang R.
        • Li T.
        • Geng M.
        • Wu G.
        • Yin Y.
        Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways.
        Cytokine. 2012; 60: 646-652https://doi.org/10.1016/j.cyto.2012.07.033
        • Steppan C.M.
        • Bailey S.T.
        • Bhat S.
        • Brown E.J.
        • Banerjee R.R.
        • Wright C.M.
        • Patel H.R.
        • Ahima R.S.
        • Lazar M.A.
        The hormone resistin links obesity to diabetes.
        Nature. 2001; 409: 307-312https://doi.org/10.1038/35053000
        • Deb A.
        • Deshmukh B.
        • Ramteke P.
        • Bhati F.K.
        • Bhat M.K.
        Resistin: a journey from metabolism to cancer.
        Transl Oncol. 2021; 14101178https://doi.org/10.1016/j.tranon.2021.101178
        • Qi Y.
        • Nie Z.
        • Lee Y.S.
        • Singhal N.S.
        • Scherer P.E.
        • Lazar M.A.
        • Ahima R.S.
        Loss of resistin improves glucose homeostasis in leptin deficiency.
        Diabetes. 2006; 55: 3083-3090https://doi.org/10.2337/db05-0615
        • Huang X.
        • Yang Z.
        Resistin's, obesity and insulin resistance: the continuing disconnect between rodents and humans.
        J Endocrinol Invest. 2016; 39: 607-615https://doi.org/10.1007/s40618-015-0408-2
        • Herzig S.
        • Shaw R.J.
        AMPK: guardian of metabolism and mitochondrial homeostasis.
        Nat Rev Mol Cell Biol. 2018; 19: 121-135https://doi.org/10.1038/nrm.2017.95
        • Palanivel R.
        • Sweeney G.
        Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin.
        FEBS Lett. 2005; 579: 5049-5054https://doi.org/10.1016/j.febslet.2005.08.011
        • Palanivel R.
        • Maida A.
        • Liu Y.
        • Sweeney G.
        Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin.
        Diabetologia. 2006; 49: 183-190https://doi.org/10.1007/s00125-005-0060-z
        • Zieba D.A.
        • Biernat W.
        • Barc J.
        Roles of leptin and resistin in metabolism, reproduction, and leptin resistance.
        Domest Anim Endocrinol. 2020; 73106472https://doi.org/10.1016/j.domaniend.2020.106472
        • He F.
        • Jin J.Q.
        • Qin Q.Q.
        • Zheng Y.Q.
        • Li T.T.
        • Zhang Y.
        • He J.D.
        Resistin regulates fatty acid beta oxidation by suppressing expression of peroxisome proliferator activator receptor gamma-coactivator 1alpha (PGC-1alpha).
        Cell Physiol Biochem. 2018; 46: 2165-2172https://doi.org/10.1159/000489546
        • Sheng C.H.
        • Du Z.W.
        • Song Y.
        • Wu X.D.
        • Zhang Y.C.
        • Wu M.
        • Wang Q.
        • Zhang G.Z.
        Human resistin inhibits myogenic differentiation and induces insulin resistance in myocytes.
        Biomed Res Int. 2013; 2013804632https://doi.org/10.1155/2013/804632
        • O'Leary M.F.
        • Wallace G.R.
        • Davis E.T.
        • Murphy D.P.
        • Nicholson T.
        • Bennett A.J.
        • Tsintzas K.
        • Jones S.W.
        Obese subcutaneous adipose tissue impairs human myogenesis, particularly in old skeletal muscle, via resistin-mediated activation of NFkappaB.
        Sci Rep. 2018; 8: 15360https://doi.org/10.1038/s41598-018-33840-x
        • Straughn A.R.
        • Hindi S.M.
        • Xiong G.
        • Kumar A.
        Canonical NF-kappaB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis.
        J Mol Cell Biol. 2019; 11: 53-66https://doi.org/10.1093/jmcb/mjy053
        • Alizadeh P.H.
        Exercise therapy for people with sarcopenic obesity: myokines and adipokines as effective actors.
        Front Endocrinol. 2022; 13 (Lausanne)811751https://doi.org/10.3389/fendo.2022.811751
        • O'Leary M.F.
        • Wallace G.R.
        • Davis E.T.
        • Murphy D.P.
        • Nicholson T.
        • Bennett A.J.
        • Tsintzas K.
        • Jones S.W.
        Obese subcutaneous adipose tissue impairs human myogenesis, particularly in old skeletal muscle, via resistin-mediated activation of NFkappaB.
        Sci Rep. 2018; 8: 15360https://doi.org/10.1038/s41598-018-33840-x
        • Hetta H.F.
        • Ez-Eldeen M.E.
        • Mohamed G.A.
        • Gaber M.A.
        • ElBadre H.M.
        • Ahmed E.A.
        • Abdellatief R.B.
        • Abd-ElBaky R.M.
        • Elkady A.
        • Nafee A.M.
        • Zahran A.M.
        • Ahmad M.
        Visfatin serum levels in obese type 2 diabetic patients: relation to proinflammatory cytokines and insulin resistance.
        Egypt J Immunol. 2018; 25: 141-151
        • Wnuk A.
        • Stangret A.
        • Watroba M.
        • Platek A.E.
        • Skoda M.
        • Cendrowski K.
        • Sawicki W.
        • Szukiewicz D.
        Can adipokine visfatin be a novel marker of pregnancy-related disorders in women with obesity?.
        Obes Rev. 2020; 21e13022https://doi.org/10.1111/obr.13022
        • Nicholson T.
        • Church C.
        • Tsintzas K.
        • Jones R.
        • Breen L.
        • Davis E.T.
        • Baker D.J.
        • Jones S.W.
        Vaspin promotes insulin sensitivity of elderly muscle and is upregulated in obesity.
        J Endocrinol. 2019; https://doi.org/10.1530/JOE-18-0528
        • Liao X.
        • Deng F.
        • Yang D.
        • Zhang L.
        • Gao L.
        • Zhang H.
        • Zhang Y.
        • Cheng Y.
        • Wang Q.
        • Zhang L.
        • Zhao Y.
        Effects of Visfatin on PI3K/Akt signaling pathway and insulin sensitivity in L6 cells.
        <sb:contribution><sb:title>Chin J</sb:title></sb:contribution><sb:host><sb:issue><sb:series><sb:title>Diabetes</sb:title></sb:series></sb:issue></sb:host>. 2019; 27: 677-681
        • Yang D.
        • Yao Q.
        • Zhang H.
        • Zhang L.
        • Wang Q.
        • Liao X.
        • Zhang Y.
        • Li S.
        • Gao L.
        Effects of visfatin on glycolipid metabolism and insulin resistance in the skeletal muscle of diabetic KKAy mice via the PI3K/Akt/FoxO1 signaling pathway.
        ChinJCompMed. 2021; 31: 16-23
        • Liu S.
        • Duan R.
        • Wu Y.
        • Du F.
        • Zhang J.
        • Li X.
        • Guo S.
        • Wang M.
        • Zhang Q.
        • Li Y.
        • Li N.
        Effects of vaspin on insulin resistance in rats and underlying mechanisms.
        Sci Rep. 2018; 8: 13542https://doi.org/10.1038/s41598-018-31923-3
        • Hulejova H.
        • Krystufkova O.
        • Mann H.
        • Klein M.
        • Pavlickova K.
        • Zamecnik J.
        • Vencovsky J.
        • Senolt L.
        Increased visfatin levels are associated with higher disease activity in anti-Jo-1-positive myositis patients.
        Clin Exp Rheumatol. 2016; 34: 222-229
        • Roy V.K.
        • Verma R.
        • Krishna A.
        Carnitine-mediated antioxidant enzyme activity and Bcl2 expression involves peroxisome proliferator-activated receptor-gamma coactivator-1alpha in mouse testis.
        Reprod Fertil Dev. 2017; 29: 1057-1063https://doi.org/10.1071/RD15336
        • McPherron A.C.
        • Lawler A.M.
        • Lee S.J.
        Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member.
        Nature. 1997; 387: 83-90https://doi.org/10.1038/387083a0
        • Lee S.J.
        Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction.
        J Clin Invest. 2021; : 131https://doi.org/10.1172/JCI148372
        • Gavalda-Navarro A.
        • Villarroya J.
        • Cereijo R.
        • Giralt M.
        • Villarroya F.
        The endocrine role of brown adipose tissue: an update on actors and actions.
        Rev Endocr Metab Disord. 2022; 23: 31-41https://doi.org/10.1007/s11154-021-09640-6
        • Kong X.
        • Yao T.
        • Zhou P.
        • Kazak L.
        • Tenen D.
        • Lyubetskaya A.
        • Dawes B.A.
        • Tsai L.
        • Kahn B.B.
        • Spiegelman B.M.
        • Liu T.
        • Rosen E.D.
        Brown adipose tissue controls skeletal muscle function via the secretion of myostatin.
        Cell Metab. 2018; 28: 631-643https://doi.org/10.1016/j.cmet.2018.07.004
        • Steculorum S.M.
        • Ruud J.
        • Karakasilioti I.
        • Backes H.
        • Engstrom R.L.
        • Timper K.
        • Hess M.E.
        • Tsaousidou E.
        • Mauer J.
        • Vogt M.C.
        • Paeger L.
        • Bremser S.
        • Klein A.C.
        • Morgan D.A.
        • Frommolt P.
        • Brinkkotter P.T.
        • Hammerschmidt P.
        • Benzing T.
        • Rahmouni K.
        • Wunderlich F.T.
        • Kloppenburg P.
        • Bruning J.C.
        AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue.
        Cell. 2016; 165: 125-138https://doi.org/10.1016/j.cell.2016.02.044
        • Xuan M.
        The effects of MSTN deletion on skeletal muscle fiber type relative factors in newborn piglets and the adipogenic differentiation in muscle.
        Yanbian University, 2018 (PhD Dissertation)
        • Dani C.
        Activins in adipogenesis and obesity.
        Int J Obes (Lond). 2013; 37: 163-166https://doi.org/10.1038/ijo.2012.28
        • Rodgers B.D.
        • Ward C.W.
        Myostatin/activin receptor ligands in muscle and the development status of attenuating drugs.
        Endocr Rev. 2022; 43: 329-365https://doi.org/10.1210/endrev/bnab030
        • Sartori R.
        • Gregorevic P.
        • Sandri M.
        TGFbeta and BMP signaling in skeletal muscle: potential significance for muscle-related disease.
        Trends Endocrinol Metab. 2014; 25: 464-471https://doi.org/10.1016/j.tem.2014.06.002
        • Han X.
        • Moller L.
        • De Groote E.
        • Bojsen-Moller K.N.
        • Davey J.
        • Henriquez-Olguin C.
        • Li Z.
        • Knudsen J.R.
        • Jensen T.E.
        • Madsbad S.
        • Gregorevic P.
        • Richter E.A.
        • Sylow L.
        Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle.
        J Cachexia Sarcopenia Muscle. 2019; 10: 1241-1257https://doi.org/10.1002/jcsm.12474
        • Winbanks C.E.
        • Weeks K.L.
        • Thomson R.E.
        • Sepulveda P.V.
        • Beyer C.
        • Qian H.
        • Chen J.L.
        • Allen J.M.
        • Lancaster G.I.
        • Febbraio M.A.
        • Harrison C.A.
        • McMullen J.R.
        • Chamberlain J.S.
        • Gregorevic P.
        Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin.
        J Cell Biol. 2012; 197: 997-1008https://doi.org/10.1083/jcb.201109091
        • Rodriguez A.
        • Becerril S.
        • Ezquerro S.
        • Mendez-Gimenez L.
        • Fruhbeck G.
        Crosstalk between adipokines and myokines in fat browning.
        Acta Physiol (Oxf). 2017; 219: 362-381https://doi.org/10.1111/apha.12686
        • Jimenez V.
        • Jambrina C.
        • Casana E.
        • Sacristan V.
        • Munoz S.
        • Darriba S.
        • Rodo J.
        • Mallol C.
        • Garcia M.
        • Leon X.
        • Marco S.
        • Ribera A.
        • Elias I.
        • Casellas A.
        • Grass I.
        • Elias G.
        • Ferre T.
        • Motas S.
        • Franckhauser S.
        • Mulero F.
        • Navarro M.
        • Haurigot V.
        • Ruberte J.
        • Bosch F.
        FGF21 gene therapy as treatment for obesity and insulin resistance.
        EMBO Mol Med. 2018; 10https://doi.org/10.15252/emmm.201708791
        • Ruan C.C.
        • Kong L.R.
        • Chen X.H.
        • Ma Y.
        • Pan X.X.
        • Zhang Z.B.
        • Gao P.J.
        A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21.
        Cell Metab. 2020; 32: 689https://doi.org/10.1016/j.cmet.2020.08.018
        • Lu W.
        • Li X.
        • Luo Y.
        FGF21 in obesity and cancer: new insights.
        Cancer Lett. 2021; 499: 5-13https://doi.org/10.1016/j.canlet.2020.11.026
        • Ruan C.C.
        • Kong L.R.
        • Chen X.H.
        • Ma Y.
        • Pan X.X.
        • Zhang Z.B.
        • Gao P.J.
        A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21.
        Cell Metab. 2018; 28: 476-489https://doi.org/10.1016/j.cmet.2018.06.013
        • Moure R.
        • Cairo M.
        • Moron-Ros S.
        • Quesada-Lopez T.
        • Campderros L.
        • Cereijo R.
        • Hernaez A.
        • Villarroya F.
        • Giralt M.
        Levels of beta-klotho determine the thermogenic responsiveness of adipose tissues: involvement of the autocrine action of FGF21.
        Am J Physiol Endocrinol Metab. 2021; 320: E822-E834https://doi.org/10.1152/ajpendo.00270.2020
        • Hondares E.
        • Iglesias R.
        • Giralt A.
        • Gonzalez F.J.
        • Giralt M.
        • Mampel T.
        • Villarroya F.
        Thermogenic activation induces FGF21 expression and release in brown adipose tissue.
        J Biol Chem. 2011; 286: 12983-12990https://doi.org/10.1074/jbc.M110.215889
        • Bal N.C.
        • Maurya S.K.
        • Pani S.
        • Sethy C.
        • Banerjee A.
        • Das S.
        • Patnaik S.
        • Kundu C.N.
        Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners?.
        Biosci Rep. 2017; : 37https://doi.org/10.1042/BSR20171087
        • Wang Y.
        The regulatory mechanism of fibroblast growth factor 21 and AdipoRon on adipogenensis and lipid metabolism.
        Huazhong Agricultural University, 2017 (PhD Dissertation)
        • Aryal B.
        • Price N.L.
        • Suarez Y.
        • Fernandez-Hernando C.
        ANGPTL4 in metabolic and cardiovascular disease.
        Trends Mol Med. 2019; 25: 723-734https://doi.org/10.1016/j.molmed.2019.05.010
        • Kristensen K.K.
        • Leth-Espensen K.Z.
        • Mertens H.
        • Birrane G.
        • Meiyappan M.
        • Olivecrona G.
        • Jorgensen T.
        • Young S.G.
        • Ploug M.
        Unfolding of monomeric lipoprotein lipase by ANGPTL4: insight into the regulation of plasma triglyceride metabolism.
        Proc Natl Acad Sci U S A. 2020; 117: 4337-4346https://doi.org/10.1073/pnas.1920202117
        • Leth-Espensen K.Z.
        • Kristensen K.K.
        • Kumari A.
        • Winther A.L.
        • Young S.G.
        • Jorgensen T.
        • Ploug M.
        The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding.
        Proc Natl Acad Sci U S A. 2021; : 118https://doi.org/10.1073/pnas.2026650118
        • Catoire M.
        • Alex S.
        • Paraskevopulos N.
        • Mattijssen F.
        • Evers-van G.I.
        • Schaart G.
        • Jeppesen J.
        • Kneppers A.
        • Mensink M.
        • Voshol P.J.
        • Olivecrona G.
        • Tan N.S.
        • Hesselink M.K.
        • Berbee J.F.
        • Rensen P.C.
        • Kalkhoven E.
        • Schrauwen P.
        • Kersten S.
        Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise.
        Proc Natl Acad Sci U S A. 2014; 111: E1043-E1052https://doi.org/10.1073/pnas.1400889111
        • Zhang R.
        • Zhang K.
        An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues.
        Prog Lipid Res. 2022; 85101140https://doi.org/10.1016/j.plipres.2021.101140
        • DiDonna N.M.
        • Chen Y.Q.
        • Konrad R.J.
        Angiopoietin-like proteins and postprandial partitioning of fatty acids.
        Curr Opin Lipidol. 2022; 33: 39-46https://doi.org/10.1097/MOL.0000000000000798
        • Fu Z.
        • Abou-Samra A.B.
        • Zhang R.
        A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase.
        Sci Rep. 2015; 5: 18502https://doi.org/10.1038/srep18502
        • Chen Y.Q.
        • Pottanat T.G.
        • Siegel R.W.
        • Ehsani M.
        • Qian Y.W.
        • Zhen E.Y.
        • Regmi A.
        • Roell W.C.
        • Guo H.
        • Luo M.J.
        • Gimeno R.E.
        • Van'T H.F.
        • Konrad R.J.
        Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids.
        J Lipid Res. 2020; 61: 1203-1220https://doi.org/10.1194/jlr.RA120000781
        • Cao H.
        • Gerhold K.
        • Mayers J.R.
        • Wiest M.M.
        • Watkins S.M.
        • Hotamisligil G.S.
        Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism.
        Cell. 2008; 134: 933-944https://doi.org/10.1016/j.cell.2008.07.048
        • Kadotani A.
        • Tsuchiya Y.
        • Hatakeyama H.
        • Katagiri H.
        • Kanzaki M.
        Different impacts of saturated and unsaturated free fatty acids on COX-2 expression in C(2)C(12) myotubes.
        Am J Physiol Endocrinol Metab. 2009; 297: E1291-E1303https://doi.org/10.1152/ajpendo.00293.2009
        • Macrae K.
        • Stretton C.
        • Lipina C.
        • Blachnio-Zabielska A.
        • Baranowski M.
        • Gorski J.
        • Marley A.
        • Hundal H.S.
        Defining the role of DAG, mitochondrial function, and lipid deposition in palmitate-induced proinflammatory signaling and its counter-modulation by palmitoleate.
        J Lipid Res. 2013; 54: 2366-2378https://doi.org/10.1194/jlr.M036996
        • Duckett S.K.
        • Volpi-Lagreca G.
        • Alende M.
        • Long N.M.
        Palmitoleic acid reduces intramuscular lipid and restores insulin sensitivity in obese sheep.
        Diabetes Metab Syndr Obes. 2014; 7: 553-563https://doi.org/10.2147/DMSO.S72695
        • Duckett S.K.
        • Volpi-Lagreca G.
        • Alende M.
        • Long N.M.
        Palmitoleic acid reduces intramuscular lipid and restores insulin sensitivity in obese sheep.
        Diabetes Metab Syndr Obes. 2014; 7: 553-563https://doi.org/10.2147/DMSO.S72695
        • Zhang J.
        • Yan Y.
        • Cui Y.
        • Sun B.
        • Wang Y.
        • Sun J.
        • Jin X.
        • Yan C.
        • Li X.
        Effects of different fatty acids on adipogenic and transdifferentiation of skeletal muscle satellite cells in Yanbian yellow cattle.
        China AnimHusbandVetMed. 2020; 47: 992-999
        • Bannehr M.
        • Lohr L.
        • Gelep J.
        • Haverkamp W.
        • Schunck W.H.
        • Gollasch M.
        • Wutzler A.
        Linoleic acid metabolite DiHOME decreases post-ischemic cardiac recovery in murine hearts.
        Cardiovasc Toxicol. 2019; 19: 365-371https://doi.org/10.1007/s12012-019-09508-x
        • Motiani P.
        • Virtanen K.A.
        • Motiani K.K.
        • Eskelinen J.J.
        • Middelbeek R.J.
        • Goodyear L.J.
        • Savolainen A.M.
        • Kemppainen J.
        • Jensen J.
        • Din M.U.
        • Saunavaara V.
        • Parkkola R.
        • Loyttyniemi E.
        • Knuuti J.
        • Nuutila P.
        • Kalliokoski K.K.
        • Hannukainen J.C.
        Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men.
        Diabetes Obes Metab. 2017; 19: 1379-1388https://doi.org/10.1111/dom.12947
        • Guo Y.
        • Zhang W.
        • Giroux C.
        • Cai Y.
        • Ekambaram P.
        • Dilly A.K.
        • Hsu A.
        • Zhou S.
        • Maddipati K.R.
        • Liu J.
        • Joshi S.
        • Tucker S.C.
        • Lee M.J.
        • Honn K.V.
        Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid.
        J Biol Chem. 2011; 286: 33832-33840https://doi.org/10.1074/jbc.M110.216564
        • Smith U.
        • Kahn B.B.
        Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids.
        J Intern Med. 2016; 280: 465-475https://doi.org/10.1111/joim.12540
        • Zhou P.
        • Santoro A.
        • Peroni O.D.
        • Nelson A.T.
        • Saghatelian A.
        • Siegel D.
        • Kahn B.B.
        PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms.
        J Clin Invest. 2019; 129: 4138-4150https://doi.org/10.1172/JCI127092
        • Brezinova M.
        • Cajka T.
        • Oseeva M.
        • Stepan M.
        • Dadova K.
        • Rossmeislova L.
        • Matous M.
        • Siklova M.
        • Rossmeisl M.
        • Kuda O.
        Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women.
        Biochim Biophys Acta Mol Cell Biol Lipids. 2020; 1865158576https://doi.org/10.1016/j.bbalip.2019.158576
        • May F.J.
        • Baer L.A.
        • Lehnig A.C.
        • So K.
        • Chen E.Y.
        • Gao F.
        • Narain N.R.
        • Gushchina L.
        • Rose A.
        • Doseff A.I.
        • Kiebish M.A.
        • Goodyear L.J.
        • Stanford K.I.
        Lipidomic adaptations in white and brown adipose tissue in response to exercise demonstrate molecular species-specific remodeling.
        Cell Rep. 2017; 18: 1558-1572https://doi.org/10.1016/j.celrep.2017.01.038
        • Valet P.
        • Pages C.
        • Jeanneton O.
        • Daviaud D.
        • Barbe P.
        • Record M.
        • Saulnier-Blache J.S.
        • Lafontan M.
        Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth.
        J Clin Invest. 1998; 101: 1431-1438https://doi.org/10.1172/JCI806
        • D'Souza K.
        • Nzirorera C.
        • Cowie A.M.
        • Varghese G.P.
        • Trivedi P.
        • Eichmann T.O.
        • Biswas D.
        • Touaibia M.
        • Morris A.J.
        • Aidinis V.
        • Kane D.A.
        • Pulinilkunnil T.
        • Kienesberger P.C.
        Autotaxin-LPA signaling contributes to obesity-induced insulin resistance in muscle and impairs mitochondrial metabolism.
        J Lipid Res. 2018; 59: 1805-1817https://doi.org/10.1194/jlr.M082008
        • Donati C.
        • Cencetti F.
        • Bruni P.
        New insights into the role of sphingosine 1-phosphate and lysophosphatidic acid in the regulation of skeletal muscle cell biology.
        Biochim Biophys Acta. 2013; 1831: 176-184https://doi.org/10.1016/j.bbalip.2012.06.013
        • Yea K.
        • Kim J.
        • Lim S.
        • Park H.S.
        • Park K.S.
        • Suh P.G.
        • Ryu S.H.
        Lysophosphatidic acid regulates blood glucose by stimulating myotube and adipocyte glucose uptake.
        J Mol Med (Berl). 2008; 86: 211-220https://doi.org/10.1007/s00109-007-0269-z
        • Yoshida S.
        • Fujisawa-Sehara A.
        • Taki T.
        • Arai K.
        • Nabeshima Y.
        Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts.
        J Cell Biol. 1996; 132: 181-193https://doi.org/10.1083/jcb.132.1.181
        • Cordova-Casanova A.
        • Cruz-Soca M.
        • Chun J.
        • Casar J.C.
        • Brandan E.
        Activation of the ATX/LPA/LPARs axis induces a fibrotic response in skeletal muscle.
        Matrix Biol. 2022; 109: 121-139https://doi.org/10.1016/j.matbio.2022.03.008
        • Chen W.
        • You W.
        • Valencak T.G.
        • Shan T.
        Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease.
        Ageing Res Rev. 2022; 80101682https://doi.org/10.1016/j.arr.2022.101682