Advertisement
Research Article| Volume 140, 155383, March 2023

Download started.

Ok

TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury

Published:January 02, 2023DOI:https://doi.org/10.1016/j.metabol.2022.155383

      Highlights

      • TMBIM6 knockdown enhances LPS-induced cardiac inflammation and cardiomyocyte death
      • TMBIM6 knockdown enhances LPS-induced mitochondrial quality control (MQC) dysfunction in cardiomyocytes
      • TMBIM6 deficiency exacerbates LPS-mediated MQC dysfunction through interrupting VDAC1-dependent mitochondrial Ca2+ import
      • TMBIM6 binds to VDAC1 and prevents its oligomerization to increase [Ca2+]m
      • TMBIM6 overexpression improves MQC and restores mitochondrial function by repressing VDAC1 oligomerization

      Abstract

      Background

      The regulatory mechanisms involved in mitochondrial quality control (MQC) dysfunction during septic cardiomyopathy (SCM) remain incompletely characterized. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) is an endoplasmic reticulum protein with Ca2+ leak activity that modulates cellular responses to various cellular stressors.

      Methods

      In this study, we evaluated the role of TMBIM6 in SCM using cardiomyocyte-specific TMBIM6 knockout (TMBIM6CKO) and TMBIM6 transgenic (TMBIM6TG) mice.

      Results

      Myocardial TMBIM6 transcription and expression were significantly downregulated in wild-type mice upon LPS exposure, along with characteristic alterations in myocardial systolic/diastolic function, cardiac inflammation, and cardiomyocyte death. Notably, these alterations were further exacerbated in LPS-treated TMBIM6CKO mice, and largely absent in TMBIM6TG mice. In LPS-treated primary cardiomyocytes, TMBIM6 deficiency further impaired mitochondrial respiration and ATP production, while defective MQC was suggested by enhanced mitochondrial fission, impaired mitophagy, and disrupted mitochondrial biogenesis. Structural protein analysis, Co-IP, mutant TMBIM6 plasmid transfection, and molecular docking assays subsequently indicated that TMBIM6 exerts cardioprotection against LPS-induced sepsis by interacting with and preventing the oligomerization of voltage-dependent anion channel-1 (VDAC1), the major route of mitochondrial Ca2+ uptake.

      Conclusion

      We conclude that the TMBIM6-VDAC1 interaction prevents VDAC1 oligomerization and thus sustains mitochondrial Ca2+ homeostasis as well as MQC, contributing to improved myocardial function in SCM.

      Abbreviations:

      MQC (mitochondrial quality control), SCM (septic cardiomyopathy), TMBIM6 (Transmembrane BAX inhibitor motif containing 6), [Ca2+]m (mitochondrial Ca2+ concentration), VDAC2 (voltage dependent anion channel 2), MCU (mitochondrial Ca2+ uniporter)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cooper Jr., L.T.
        • Hare J.M.
        • Tazelaar H.D.
        • Edwards W.D.
        • Starling R.C.
        • Deng M.C.
        • et al.
        Usefulness of immunosuppression for giant cell myocarditis.
        Am J Cardiol. 2008; 102: 1535-1539
        • Frustaci A.
        • Russo M.A.
        • Chimenti C.
        Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study.
        Eur Heart J. 2009; 30: 1995-2002
        • Wojnicz R.
        • Nowalany-Kozielska E.
        • Wojciechowska C.
        • Glanowska G.
        • Wilczewski P.
        • Niklewski T.
        • et al.
        Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: two-year follow-up results.
        Circulation. 2001; 104: 39-45
        • Kwon H.J.
        • Coté T.R.
        • Cuffe M.S.
        • Kramer J.M.
        • Braun M.M.
        Case reports of heart failure after therapy with a tumor necrosis factor antagonist.
        Ann Intern Med. 2003; 138: 807-811
        • Mann D.L.
        • McMurray J.J.
        • Packer M.
        • Swedberg K.
        • Borer J.S.
        • Colucci W.S.
        • et al.
        Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL).
        Circulation. 2004; 109: 1594-1602
        • Chung E.S.
        • Packer M.
        • Lo K.H.
        • Fasanmade A.A.
        • Willerson J.T.
        Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial.
        Circulation. 2003; 107: 3133-3140
        • Ji L.
        • He Q.
        • Liu Y.
        • Deng Y.
        • Xie M.
        • Luo K.
        • et al.
        Ketone body β-hydroxybutyrate prevents myocardial oxidative stress in septic cardiomyopathy.
        Oxid Med Cell Longev. 2022; 2022: 2513837
        • Jiang X.
        • Cai S.
        • Jin Y.
        • Wu F.
        • He J.
        • Wu X.
        • et al.
        Irisin attenuates oxidative stress, mitochondrial dysfunction, and apoptosis in the H9C2 cellular model of septic cardiomyopathy through augmenting Fundc1-dependent mitophagy.
        Oxid Med Cell Longev. 2021; 20212989974
        • Wang R.
        • Xu Y.
        • Fang Y.
        • Wang C.
        • Xue Y.
        • Wang F.
        • et al.
        Pathogenetic mechanisms of septic cardiomyopathy.
        J Cell Physiol. 2022; 237: 49-58
        • Combot Y.
        • Salo V.T.
        • Chadeuf G.
        • Hölttä M.
        • Ven K.
        • Pulli I.
        • et al.
        Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes.
        Cell Rep. 2022; 38110213
        • Wang X.
        • Cao H.
        • Fang Y.
        • Bai H.
        • Chen J.
        • Xing C.
        • et al.
        Activation of endoplasmic reticulum-mitochondria coupling drives copper-induced autophagy in duck renal tubular epithelial cells.
        Ecotoxicol Environ Saf. 2022; 235113438
        • Garbincius J.F.
        • Luongo T.S.
        • Jadiya P.
        • Hildebrand A.N.
        • Kolmetzky D.W.
        • Mangold A.S.
        • et al.
        Enhanced NCLX-dependent mitochondrial Ca(2+) efflux attenuates pathological remodeling in heart failure.
        J Mol Cell Cardiol. 2022; 167: 52-66
        • Shankar T.S.
        • Ramadurai D.K.A.
        • Steinhorst K.
        • Sommakia S.
        • Badolia R.
        • Thodou Krokidi A.
        • et al.
        Cardiac-specific deletion of voltage dependent anion channel 2 leads to dilated cardiomyopathy by altering calcium homeostasis.
        Nat Commun. 2021; 12: 4583
        • Liu T.
        • Yang N.
        • Sidor A.
        • O'Rourke B.
        MCU overexpression rescues inotropy and reverses heart failure by reducing SR Ca(2+) leak.
        Circ Res. 2021; 128: 1191-1204
        • Kim H.R.
        • Lee G.H.
        • Ha K.C.
        • Ahn T.
        • Moon J.Y.
        • Lee B.J.
        • et al.
        Bax Inhibitor-1 is a pH-dependent regulator of Ca2+ channel activity in the endoplasmic reticulum.
        J Biol Chem. 2008; 283: 15946-15955
        • Xu Q.
        • Reed J.C.
        Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast.
        Mol Cell. 1998; 1: 337-346
        • Sano R.
        • Hou Y.C.
        • Hedvat M.
        • Correa R.G.
        • Shu C.W.
        • Krajewska M.
        • et al.
        Endoplasmic reticulum protein BI-1 regulates Ca2+-mediated bioenergetics to promote autophagy.
        Genes Dev. 2012; 26: 1041-1054
        • Wang J.
        • Zhu P.
        • Li R.
        • Ren J.
        • Zhang Y.
        • Zhou H.
        Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2.
        Theranostics. 2020; 10: 384-397
        • Wang J.
        • Chen P.
        • Cao Q.
        • Wang W.
        • Chang X.
        Traditional Chinese medicine ginseng dingzhi decoction ameliorates myocardial fibrosis and high glucose-induced cardiomyocyte injury by regulating intestinal flora and mitochondrial dysfunction.
        Oxid Med Cell Longev. 2022; 20229205908
        • Zhou H.
        • Toan S.
        • Zhu P.
        • Wang J.
        • Ren J.
        • Zhang Y.
        DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis.
        Basic Res Cardiol. 2020; 115: 11
        • Zhou H.
        • Shi C.
        • Hu S.
        • Zhu H.
        • Ren J.
        • Chen Y.
        BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing syk-Nox2-Drp1-mitochondrial fission pathways.
        Angiogenesis. 2018; 21: 599-615
        • Zhou H.
        • Wang J.
        • Hu S.
        • Zhu H.
        • Toanc S.
        • Ren J.
        BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways.
        J Cell Physiol. 2019; 234: 5056-5069
        • Wang Y.
        • Jasper H.
        • Toan S.
        • Muid D.
        • Chang X.
        • Zhou H.
        Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury.
        Redox Biol. 2021; 45102049
        • Wang S.
        • Zhu H.
        • Li R.
        • Mui D.
        • Toan S.
        • Chang X.
        • et al.
        DNA-PKcs interacts with and phosphorylates Fis1 to induce mitochondrial fragmentation in tubular cells during acute kidney injury.
        Sci Signal. 2022; 15eabh1121
        • Zhu H.
        • Tan Y.
        • Du W.
        • Li Y.
        • Toan S.
        • Mui D.
        • et al.
        Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control.
        Redox Biol. 2021; 38101777
        • Zhou H.
        • Zhu P.
        • Wang J.
        • Zhu H.
        • Ren J.
        • Chen Y.
        Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy.
        Cell Death Differ. 2018; 25: 1080-1093
        • Wang J.
        • Toan S.
        • Li R.
        • Zhou H.
        Melatonin fine-tunes intracellular calcium signals and eliminates myocardial damage through the IP3R/MCU pathways in cardiorenal syndrome type 3.
        Biochem Pharmacol. 2020; 174113832
        • Tan Y.
        • Mui D.
        • Toan S.
        • Zhu P.
        • Li R.
        • Zhou H.
        SERCA overexpression improves mitochondrial quality control and attenuates cardiac microvascular ischemia-reperfusion injury.
        Mol Ther Nucleic Acids. 2020; 22: 696-707
        • Zalk R.
        • Israelson A.
        • Garty E.S.
        • Azoulay-Zohar H.
        • Shoshan-Barmatz V.
        Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria.
        Biochem J. 2005; 386: 73-83
        • Geula S.
        • Naveed H.
        • Liang J.
        • Shoshan-Barmatz V.
        Structure-based analysis of VDAC1 protein: DEFINING OLIGOMER CONTACT SITES*.
        JBiolChem. 2012; 287: 2179-2190
        • Wang J.
        • Zhu P.
        • Li R.
        • Ren J.
        • Zhou H.
        Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission.
        Redox Biol. 2020; 30101415
        • Xian H.
        • Liou Y.C.
        Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy.
        Cell Death Differ. 2021; 28: 827-842
        • Jamwal S.
        • Blackburn J.K.
        • Elsworth J.D.
        PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders.
        Pharmacol Ther. 2021; 219107705
        • Chiu H.Y.
        • Loh A.H.P.
        • Taneja R.
        Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma.
        Cell Death Dis. 2022; 13: 419
        • Patra S.
        • Mahapatra K.K.
        • Praharaj P.P.
        • Panigrahi D.P.
        • Bhol C.S.
        • Mishra S.R.
        • et al.
        Intricate role of mitochondrial calcium signalling in mitochondrial quality control for regulation of cancer cell fate.
        Mitochondrion. 2021; 57: 230-240
        • Lim D.
        • Dematteis G.
        • Tapella L.
        • Genazzani A.A.
        • Calì T.
        • Brini M.
        • et al.
        Ca(2+) handling at the mitochondria-ER contact sites in neurodegeneration.
        Cell Calcium. 2021; 98102453
        • Garbincius J.F.
        • Elrod J.W.
        Mitochondrial calcium exchange in physiology and disease.
        Physiol Rev. 2022; 102: 893-992
        • Lebeaupin C.
        • Blanc M.
        • Vallée D.
        • Keller H.
        • Bailly-Maitre B.
        BAX inhibitor-1: between stress and survival.
        FEBS J. 2020; 287: 1722-1736
        • Keinan N.
        • Pahima H.
        • Ben-Hail D.
        • Shoshan-Barmatz V.
        The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis.
        Biochim Biophys Acta. 2013; 1833: 1745-1754
        • Shoshan-Barmatz V.
        • De S.
        • Meir A.
        The mitochondrial voltage-dependent anion channel 1, Ca(2+) transport, apoptosis, and their regulation.
        Front Oncol. 2017; 7: 60
        • Kim H.K.
        • Bhattarai K.R.
        • Junjappa R.P.
        • Ahn J.H.
        • Pagire S.H.
        • Yoo H.J.
        • et al.
        TMBIM6/BI-1 contributes to cancer progression through assembly with mTORC2 and AKT activation.
        Nat Commun. 2020; 11: 4012
        • Keinan N.
        • Tyomkin D.
        • Shoshan-Barmatz V.
        Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis.
        Mol Cell Biol. 2010; 30: 5698-5709
        • Tan Y.
        • Chen S.
        • Zhong J.
        • Ren J.
        • Dong M.
        Mitochondrial injury and targeted intervention in septic cardiomyopathy.
        Curr Pharm Des. 2019; 25: 2060-2070
        • Ishikawa T.
        • Watanabe N.
        • Nagano M.
        • Kawai-Yamada M.
        • Lam E.
        Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor.
        Cell Death Differ. 2011; 18: 1271-1278
        • Kim H.R.
        • Lee G.H.
        • Cho E.Y.
        • Chae S.W.
        • Ahn T.
        • Chae H.J.
        Bax inhibitor 1 regulates ER-stress-induced ROS accumulation through the regulation of cytochrome P450 2E1.
        J Cell Sci. 2009; 122: 1126-1133
        • Xu G.
        • Wang S.
        • Han S.
        • Xie K.
        • Wang Y.
        • Li J.
        • et al.
        Plant Bax Inhibitor-1 interacts with ATG6 to regulate autophagy and programmed cell death.
        Autophagy. 2017; 13: 1161-1175
        • Kiviluoto S.
        • Schneider L.
        • Luyten T.
        • Vervliet T.
        • Missiaen L.
        • De Smedt H.
        • et al.
        Bax inhibitor-1 is a novel IP₃ receptor-interacting and -sensitizing protein.
        Cell Death Dis. 2012; 3e367
        • Wu S.
        • Song W.
        • Wong C.C.L.
        • Shi Y.
        Bax inhibitor 1 is a γ-secretase-independent presenilin-binding protein.
        Proc Natl Acad Sci U S A. 2019; 116: 141-147
        • Doycheva D.
        • Kaur H.
        • Tang J.
        • Zhang J.H.
        The characteristics of the ancient cell death suppressor, TMBIM6, and its related signaling pathways after endoplasmic reticulum stress.
        J Neurosci Res. 2020; 98: 77-86
        • Bhattarai K.R.
        • Kim H.K.
        • Chaudhary M.
        • Ur Rashid M.M.
        • Kim J.
        • Kim H.R.
        • et al.
        TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans.
        Redox Biol. 2021; 47102128
        • Wang X.
        • Tian L.
        • Li Y.
        • Wang J.
        • Yan B.
        • Yang L.
        • et al.
        RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent.
        J Exp Clin Cancer Res. 2021; 40: 80
        • Xin T.
        • Lu C.
        SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury.
        Aging. 2020; 12 (Albany NY): 16224-16237
        • Shang X.
        • Zhang Y.
        • Xu J.
        • Li M.
        • Wang X.
        • Yu R.
        SRV2 promotes mitochondrial fission and Mst1-Drp1 signaling in LPS-induced septic cardiomyopathy.
        Aging. 2020; 12 (Albany NY): 1417-1432
        • Chen Z.
        • Zhou Q.
        • Chen J.
        • Yang Y.
        • Chen W.
        • Mao H.
        • et al.
        MCU-dependent mitochondrial calcium uptake-induced mitophagy contributes to apelin-13-stimulated VSMCs proliferation.
        Vascul Pharmacol. 2022; 144106979
        • Liu Y.
        • Jin M.
        • Wang Y.
        • Zhu J.
        • Tan R.
        • Zhao J.
        • et al.
        MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth.
        Signal Transduct Target Ther. 2020; 5: 59
        • Li S.
        • Chen J.
        • Liu M.
        • Chen Y.
        • Wu Y.
        • Li Q.
        • et al.
        Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury.
        Basic Res Cardiol. 2021; 116: 65
        • Madungwe N.B.
        • Feng Y.
        • Imam Aliagan A.
        • Tombo N.
        • Kaya F.
        • Bopassa J.C.
        Inner mitochondrial membrane protein MPV17 mutant mice display increased myocardial injury after ischemia/reperfusion.
        Am J Transl Res. 2020; 12: 3412-3428
        • Stevic N.
        • Maalouf J.
        • Argaud L.
        • Gallo-Bona N.
        • Lo Grasso M.
        • Gouriou Y.
        • et al.
        Cooling uncouples differentially ROS production from respiration and Ca(2+) homeostasis dynamic in brain and heart mitochondria.
        Cells. 2022; : 11
        • Nakamura T.
        • Ogawa M.
        • Kojima K.
        • Takayanagi S.
        • Ishihara S.
        • Hattori K.
        • et al.
        The mitochondrial Ca(2+) uptake regulator, MICU1, is involved in cold stress-induced ferroptosis.
        EMBO Rep. 2021; 22e51532
        • Baumgartner H.K.
        • Gerasimenko J.V.
        • Thorne C.
        • Ferdek P.
        • Pozzan T.
        • Tepikin A.V.
        • et al.
        Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening.
        J Biol Chem. 2009; 284: 20796-20803
        • Mitra A.
        • Basak T.
        • Datta K.
        • Naskar S.
        • Sengupta S.
        • Sarkar S.
        Role of α-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction.
        Cell Death Dis. 2013; 4e582
        • Liao Z.
        • Liu D.
        • Tang L.
        • Yin D.
        • Yin S.
        • Lai S.
        • et al.
        Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: involvement of VDAC1 downregulation.
        Mol Nutr Food Res. 2015; 59: 454-464
        • Klapper-Goldstein H.
        • Verma A.
        • Elyagon S.
        • Gillis R.
        • Murninkas M.
        • Pittala S.
        • et al.
        VDAC1 in the diseased myocardium and the effect of VDAC1-interacting compound on atrial fibrosis induced by hyperaldosteronism.
        Sci Rep. 2020; 10: 22101
        • Wu N.N.
        • Bi Y.
        • Ajoolabady A.
        • You F.
        • Sowers J.
        • Wang Q.
        • et al.
        Parkin insufficiency accentuates high-fat diet-induced cardiac remodeling and contractile dysfunction through VDAC1-mediated mitochondrial Ca(2+) overload.
        JACC Basic Transl Sci. 2022; 7: 779-796
        • Angelini A.
        • Saha P.K.
        • Jain A.
        • Jung S.Y.
        • Mynatt R.L.
        • Pi X.
        • et al.
        PHDs/CPT1B/VDAC1 axis regulates long-chain fatty acid oxidation in cardiomyocytes.
        Cell Rep. 2021; 37109767
        • Shteinfer-Kuzmine A.
        • Argueti-Ostrovsky S.
        • Leyton-Jaimes M.F.
        • Anand U.
        • Abu-Hamad S.
        • Zalk R.
        • et al.
        Targeting the mitochondrial protein VDAC1 as a potential therapeutic strategy in ALS.
        Int J Mol Sci. 2022; 23
        • Shoshan-Barmatz V.
        • Shteinfer-Kuzmine A.
        • Verma A.
        VDAC1 at the intersection of cell metabolism, apoptosis, and diseases.
        Biomolecules. 2020; : 10
        • Shoshan-Barmatz V.
        • Krelin Y.
        • Shteinfer-Kuzmine A.
        VDAC1 functions in Ca(2+) homeostasis and cell life and death in health and disease.
        Cell Calcium. 2018; 69: 81-100
        • Ben-Hail D.
        • Begas-Shvartz R.
        • Shalev M.
        • Shteinfer-Kuzmine A.
        • Gruzman A.
        • Reina S.
        • et al.
        Novel compounds targeting the mitochondrial protein VDAC1 inhibit apoptosis and protect against mitochondrial dysfunction.
        J Biol Chem. 2016; 291: 24986-25003
        • Verma A.
        • Pittala S.
        • Alhozeel B.
        • Shteinfer-Kuzmine A.
        • Ohana E.
        • Gupta R.
        • et al.
        The role of the mitochondrial protein VDAC1 in inflammatory bowel disease: a potential therapeutic target.
        Mol Ther. 2022; 30: 726-744
        • Kim J.
        • Gupta R.
        • Blanco L.P.
        • Yang S.
        • Shteinfer-Kuzmine A.
        • Wang K.
        • et al.
        VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease.
        Science. 2019; 366: 1531-1536
        • Shoshan-Barmatz V.
        • Nahon-Crystal E.
        • Shteinfer-Kuzmine A.
        • Gupta R.
        VDAC1, mitochondrial dysfunction, and Alzheimer's disease.
        Pharmacol Res. 2018; 131: 87-101
        • Shoshan-Barmatz V.
        • Maldonado E.N.
        • Krelin Y.
        VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress.
        Cell Stress. 2017; 1: 11-36
        • Shoshan-Barmatz V.
        • Krelin Y.
        • Chen Q.
        VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis.
        Curr Med Chem. 2017; 24: 4435-4446
        • Huang L.
        • Han J.
        • Ben-Hail D.
        • He L.
        • Li B.
        • Chen Z.
        • et al.
        A new fungal diterpene induces VDAC1-dependent apoptosis in Bax/Bak-deficient cells.
        J Biol Chem. 2015; 290: 23563-23578
        • Jeong J.J.
        • Park N.
        • Kwon Y.J.
        • Ye D.J.
        • Moon A.
        • Chun Y.J.
        Role of annexin A5 in cisplatin-induced toxicity in renal cells: molecular mechanism of apoptosis.
        J Biol Chem. 2014; 289: 2469-2481
        • Rosencrans W.M.
        • Aguilella V.M.
        • Rostovtseva T.K.
        • Bezrukov S.M.
        α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport.
        Cell Calcium. 2021; 95102355