Advertisement
Research Article| Volume 142, 155400, May 2023

Females have a different metabolic response to critical illness, measured by comprehensive amino acid flux analysis

Published:January 26, 2023DOI:https://doi.org/10.1016/j.metabol.2023.155400

      Highlights

      • Critically ill females have the highest increase and attenuated reduction of amino acid pathways.
      • Large differences between males and females exist specifically for glutamine and glutamate whole body productions.
      • Severely ill females showed a suppressed metabolism. Compartmental analysis supported the observations.

      Abstract

      Background

      The trajectory from healthy to critical illness is influenced by numerous factors, including metabolism, which differs substantially between males and females. Whole body protein breakdown is substantially increased in critically ill patients, but it remains unclear whether there are sex differences that could explain the different health outcomes. Hence, we performed a secondary analysis of a study, where we used a novel pulse isotope method in critically ill and matched healthy males and females.

      Methods

      In 51 critically ill ICU patients (26 males, 15 females) and 49 healthy controls (36 males and 27 females), we assessed their general and disease characteristics and collected arterial(ized) blood in the postabsorptive state after pulse administration of 8 ml of a solution containing 18 stable AA tracers. In contrast to the original study, we now fitted the decay curves and calculated non-compartmental whole body amino acid production (WBP) and compartmental measurements of metabolism, including intracellular amino acid production. We measured amino acid enrichments and concentrations by LC-MS/MS and derived statistics using AN(C)OVA.

      Results

      Critically ill males and females showed an increase in the WBP of many amino acids, including those related to protein breakdown, but females showed greater elevations, or in the event of a reduction, attenuated reductions. Protein breakdown-independent WBP differences remained between males and females, notably increased glutamine and glutamate WBP. Only severely ill females showed a lower increase in WBP of many amino acids in comparison to moderately ill females, suggesting a suppressed metabolism. Compartmental analysis supported the observations.

      Conclusions

      The present study shows that females have a different response to critical illness in the production of several amino acids and changes in protein breakdown, observations made possible using our innovative stable tracer pulse approach.

      Clinical trial registry

      Data are from the baseline measurements of study NCT02770092 (URL: https://clinicaltrials.gov/ct2/show/NCT02770092) and NCT03628365 (URL: https://clinicaltrials.gov/ct2/show/NCT03628365).

      Abbreviations:

      BCAA (branched-chain amino acids), BIA (bioimpedance analysis), BMI (body mass index), FFM (fat-free mass), hsCRP (high sensitivity C-reactive protein), ICU (intensive care unit), PHE (phenylalanine), REE (resting energy expenditure), SOFA (systemic organ failure assessment), TRP (tryptophan), TTR (tracer/tracee ratio), TYR (tyrosine), WBP (whole body production rate)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Metabolism - Clinical and Experimental
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rousseau A.F.
        • Lucania S.
        • Fadeur M.
        • Verbrugge A.M.
        • Cavalier E.
        • Colson C.
        • Misset B.
        Adequacy of nutritional intakes during the year after critical illness: an observational study in a post-ICU follow-up clinic.
        Nutrients. 2022; 14 (Epub 20220915) (PubMed PMID: 36145173; PMCID: PMC9502764)https://doi.org/10.3390/nu14183797
        • Haines R.W.
        • Fowler A.J.
        • Wan Y.I.
        • Flower L.
        • Heyland D.K.
        • Day A.
        • Pearse R.M.
        • Prowle J.R.
        • Puthucheary Z.
        Catabolism in critical illness: a reanalysis of the REducing Deaths due to OXidative Stress (REDOXS) trial.
        Crit. Care Med. 2022; 50 (Epub 20220228) (PubMed PMID: 35220340): 1072-1082https://doi.org/10.1097/CCM.0000000000005499
        • Engelhardt L.J.
        • Grunow J.J.
        • Wollersheim T.
        • Carbon N.M.
        • Balzer F.
        • Spranger J.
        • Weber-Carstens S.
        Sex-specific aspects of skeletal muscle metabolism in the clinical context of intensive care unit-acquired weakness.
        J Clin Med. 2022; 11 (PubMed PMID: 35160299; PMCID: PMC8836746): 846https://doi.org/10.3390/jcm11030846
        • Hohn A.
        • Oksuzyan A.
        • Lindahl-Jacobsen R.
        • Christensen K.
        • Seaman R.
        Gender differences in time to first hospital admission at age 60 in Denmark, 1995-2014.
        Eur J Ageing. 2021; 18 (Epub 20210327) (PubMed PMID: 34786008; PMCID: PMC8563932): 443-451https://doi.org/10.1007/s10433-021-00614-w
        • Ancochea J.
        • Izquierdo J.L.
        • Soriano J.B.
        Evidence of gender differences in the diagnosis and management of coronavirus disease 2019 patients: an analysis of electronic health records using natural language processing and machine learning.
        J Womens Health (Larchmt). 2021; 30 (Epub 20201216) (PubMed PMID: 33416429): 393-404https://doi.org/10.1089/jwh.2020.8721
        • Luethi N.
        • Bailey M.
        • Higgins A.
        • Howe B.
        • Peake S.
        • Delaney A.
        • Bellomo R.
        • investigators A
        Gender differences in mortality and quality of life after septic shock: a post-hoc analysis of the ARISE study.
        J Crit Care. 2020; 55 (Epub 20191108) (PubMed PMID: 31739087): 177-183https://doi.org/10.1016/j.jcrc.2019.11.002
        • Xu J.
        • Tong L.
        • Yao J.
        • Guo Z.
        • Lui K.Y.
        • Hu X.
        • Cao L.
        • Zhu Y.
        • Huang F.
        • Guan X.
        • Cai C.
        Association of sex with clinical outcome in critically ill sepsis patients: a retrospective analysis of the large clinical database MIMIC-III.
        Shock (Augusta, Ga). 2019; 52 (PubMed PMID: 30138298; PMCID: PMC6687414): 146-151https://doi.org/10.1097/SHK.0000000000001253
        • Hollinger A.
        • Gayat E.
        • Feliot E.
        • Paugam-Burtz C.
        • Fournier M.C.
        • Duranteau J.
        • Lefrant J.Y.
        • Leone M.
        • Jaber S.
        • Mebazaa A.
        • Arrigo M.
        • investigators FIs
        Gender and survival of critically ill patients: results from the FROG-ICU study.
        Ann Intens Care. 2019; 9 (PubMed PMID: 30927096; PMCID: PMC6441070): 43https://doi.org/10.1186/s13613-019-0514-y
        • Brinkman S.
        • de Jonge E.
        • Abu-Hanna A.
        • Arbous M.S.
        • de Lange D.W.
        • de Keizer N.F.
        Mortality after hospital discharge in ICU patients.
        Crit Care Med. 2013; 41 (PubMed PMID: 23591209): 1229-1236https://doi.org/10.1097/CCM.0b013e31827ca4e1
        • Palaiodimos L.
        • Kokkinidis D.G.
        • Li W.
        • Karamanis D.
        • Ognibene J.
        • Arora S.
        • Southern W.N.
        • Mantzoros C.S.
        Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York.
        Metabolism. 2020; 108: 154262https://doi.org/10.1016/j.metabol.2020.154262
      1. Provisional life expectancy estimates for 2020.
        2021
        • Reinikainen M.
        • Niskanen M.
        • Uusaro A.
        • Ruokonen E.
        Impact of gender on treatment and outcome of ICU patients.
        Acta Anaesthesiol Scand. 2005; 49 (PubMed PMID: 16045660): 984-990https://doi.org/10.1111/j.1399-6576.2005.00759.x
        • Mahmood K.
        • Eldeirawi K.
        • Wahidi M.M.
        Association of gender with outcomes in critically ill patients.
        Crit Care. 2012; 16 (Epub 20120522) (PubMed PMID: 22617003; PMCID: PMC3580638): R92https://doi.org/10.1186/cc11355
        • Ma J.G.
        • Zhu B.
        • Jiang L.
        • Jiang Q.
        • Xi X.M.
        Gender- and age-based differences in outcomes of mechanically ventilated ICU patients: a Chinese multicentre retrospective study.
        BMC Anesthesiol. 2022; 22 (Epub 20220110) (PubMed PMID: 35012463; PMCID: PMC8744292): 18https://doi.org/10.1186/s12871-021-01555-8
        • Scully E.P.
        • Schumock G.
        • Fu M.
        • Massaccesi G.
        • Muschelli J.
        • Betz J.
        • Klein E.Y.
        • West N.E.
        • Robinson M.
        • Garibaldi B.T.
        • Bandeen-Roche K.
        • Zeger S.
        • Klein S.L.
        • Gupta A.
        Sex and gender differences in testing, hospital admission, clinical presentation, and drivers of severe outcomes from COVID-19. Open forum.
        Infect Dis. 2021; 8 (PubMed PMID: 34584899; PMCID: PMC8465334)ofab448https://doi.org/10.1093/ofid/ofab448
        • Jin J.M.
        • Bai P.
        • He W.
        • Wu F.
        • Liu X.F.
        • Han D.M.
        • Liu S.
        • Yang J.K.
        Gender differences in patients with COVID-19: focus on severity and mortality.
        Front Public Health. 2020; 8 (Epub 20200429) (PubMed PMID: 32411652; PMCID: PMC7201103): 152https://doi.org/10.3389/fpubh.2020.00152
        • Angele M.K.
        • Pratschke S.
        • Hubbard W.J.
        • Chaudry I.H.
        Gender differences in sepsis: cardiovascular and immunological aspects.
        Virulence. 2014; 5 (Epub 20131105) (PubMed PMID: 24193307; PMCID: PMC3916365): 12-19https://doi.org/10.4161/viru.26982
        • Wernly B.
        • Bruno R.R.
        • Mamandipoor B.
        • Jung C.
        • Osmani V.
        Sex-specific outcomes and management in critically ill septic patients.
        Eur J Intern Med. 2021; 83 (Epub 20201012) (PubMed PMID: 33059966): 74-77https://doi.org/10.1016/j.ejim.2020.10.009
        • Pietropaoli A.P.
        • Glance L.G.
        • Oakes D.
        • Fisher S.G.
        Gender differences in mortality in patients with severe sepsis or septic shock.
        Gend Med. 2010; 7 (PubMed PMID: 21056869; PMCID: PMC3322379): 422-437https://doi.org/10.1016/j.genm.2010.09.005
        • Nachtigall I.
        • Tafelski S.
        • Rothbart A.
        • Kaufner L.
        • Schmidt M.
        • Tamarkin A.
        • Kartachov M.
        • Zebedies D.
        • Trefzer T.
        • Wernecke K.D.
        • Spies C.
        Gender-related outcome difference is related to course of sepsis on mixed ICUs: a prospective, observational clinical study.
        Crit Care. 2011; 15 (PubMed PMID: 21693012; PMCID: PMC3219025): R151https://doi.org/10.1186/cc10277
        • Sakr Y.
        • Elia C.
        • Mascia L.
        • Barberis B.
        • Cardellino S.
        • Livigni S.
        • Fiore G.
        • Filippini C.
        • Ranieri V.M.
        The influence of gender on the epidemiology of and outcome from severe sepsis.
        Crit Care. 2013; 17 (PubMed PMID: 23506971; PMCID: PMC3733421): R50https://doi.org/10.1186/cc12570
        • Eddleston J.M.
        • White P.
        • Guthrie E.
        Survival, morbidity, and quality of life after discharge from intensive care.
        Crit Care Med. 2000; 28 (Epub 2000/08/02) (PubMed PMID: 10921555): 2293-2299https://doi.org/10.1097/00003246-200007000-00018
        • Larsson E.
        • Zettersten E.
        • Jaderling G.
        • Ohlsson A.
        • Bell M.
        The influence of gender on ICU admittance. Scand J trauma resusc.
        Emerg Med. 2015; 23 (PubMed PMID: 26702646; PMCID: PMC4690252): 108https://doi.org/10.1186/s13049-015-0191-2
        • Schroder J.
        • Kahlke V.
        • Staubach K.H.
        • Zabel P.
        • Stuber F.
        Gender differences in human sepsis.
        Arch Surg. 1998; 133 (PubMed PMID: 9820351): 1200-1205https://doi.org/10.1001/archsurg.133.11.1200
        • Pandey S.
        • Siddiqui M.A.
        • Trigun S.K.
        • Azim A.
        • Sinha N.
        Gender-specific association of oxidative stress and immune response in septic shock mortality using NMR-based metabolomics.
        Mol Omics. 2022; 18 (Epub 20220221) (PubMed PMID: 34881387): 143-153https://doi.org/10.1039/d1mo00398d
        • Wichmann M.W.
        • Zellweger R.
        • DeMaso C.M.
        • Ayala A.
        • Chaudry I.H.
        Enhanced immune responses in females, as opposed to decreased responses in males following haemorrhagic shock and resuscitation.
        Cytokine. 1996; 8 (PubMed PMID: 9047082): 853-863https://doi.org/10.1006/cyto.1996.0114
        • Iskander K.N.
        • Osuchowski M.F.
        • Stearns-Kurosawa D.J.
        • Kurosawa S.
        • Stepien D.
        • Valentine C.
        • Remick D.G.
        Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding.
        Physiol Rev. 2013; 93 (Epub 2013/08/01) (PubMed PMID: 23899564; PMCID: PMC3962548): 1247-1288https://doi.org/10.1152/physrev.00037.2012
        • Rosa-Caldwell M.E.
        • Greene N.P.
        Muscle metabolism and atrophy: let's talk about sex.
        Biol Sex Differ. 2019; 10 (PubMed PMID: 31462271; PMCID: PMC6714453): 43https://doi.org/10.1186/s13293-019-0257-3
        • Tardif N.
        • Polia F.
        • Tjader I.
        • Gustafsson T.
        • Rooyackers O.
        Autophagy flux in critical illness, a translational approach.
        Sci Rep. 2019; 9 (PubMed PMID: 31341174; PMCID: PMC6656759): 10762https://doi.org/10.1038/s41598-019-45500-9
        • Liebau F.
        • Deane A.M.
        • Rooyackers O.
        Protein absorption and kinetics in critical illness.
        Curr Opin Clin Nutr Metab Care. 2021; 24 (Epub 2020/12/17) (PubMed PMID: 33323717): 71-78https://doi.org/10.1097/MCO.0000000000000707
        • Deutz N.E.P.
        • Singer P.
        • Wierzchowska-McNew R.A.
        • Viana M.V.
        • Ben-David I.A.
        • Pantet O.
        • Thaden J.J.
        • GAM Ten Have
        • Engelen M.
        • Berger M.M.
        Comprehensive metabolic amino acid flux analysis in critically ill patients.
        Clin Nutrition (Edinburgh, Scotland). 2021; 40 (Epub 20210318) (PubMed PMID: 33946038; PMCID: PMC8172442): 2876-2897https://doi.org/10.1016/j.clnu.2021.03.015
        • Wolfe R.R.
        • Chinkes D.L.
        Isotope tracers in metabolic research: principles and practice of kinetic analysis.
        Wiley, New York2005 (1–274 p)
        • Luiking Y.C.
        • Poeze M.
        • Ramsay G.
        • Deutz N.E.
        Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production.
        Am J Clin Nutrition. 2009; 89 (Epub 20081203) (PubMed PMID: 19056593): 142-152https://doi.org/10.3945/ajcn.2007.25765
        • Luiking Y.C.
        • Poeze M.
        • Deutz N.E.
        Arginine infusion in patients with septic shock increases nitric oxide production without haemodynamic instability.
        Clin Science. 2015; 128 (Epub 2014/07/19) (PubMed PMID: 25036556): 57-67https://doi.org/10.1042/CS20140343
        • Wolfe R.R.
        The 2017 Sir David P Cuthbertson lecture. Amino acids and muscle protein metabolism in critical care.
        Clin Nutrition (Edinburgh, Scotland). 2018; 37 (Epub 2018/01/03) (PubMed PMID: 29291898): 1093-1100https://doi.org/10.1016/j.clnu.2017.12.010
        • NEP Deutz
        • Thaden J.J.
        • GAM Ten Have
        • Walker D.K.
        • Engelen M.
        Metabolic phenotyping using kinetic measurements in young and older healthy adults.
        Metabolism. 2018; 78 (Epub 20171003) (PubMed PMID: 28986165; PMCID: PMC5732887): 167-178https://doi.org/10.1016/j.metabol.2017.09.015
        • Engelen M.
        • GAM Ten Have
        • Thaden J.J.
        • NEP Deutz
        New advances in stable tracer methods to assess whole-body protein and amino acid metabolism.
        Curr Opin Clin Nutr Metab Care. 2019; 22 (Epub 2019/06/14) (PubMed PMID: 31192825): 337-346https://doi.org/10.1097/MCO.0000000000000583
        • Raith E.P.
        • Udy A.A.
        • Bailey M.
        • Bellomo R.
        • Pilcher D.V.
        • McGloughlin S.
        • MacIsaac C.
        Australian, New Zealand Intensive Care Society Centre for O, Resource E. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit.
        JAMA-J Am Med Assoc. 2017; 317 (Epub 20220915) (PubMed PMID: 36145173; PMCID: PMC9502764): 290-300https://doi.org/10.1001/jama.2016.20328
        • Lee Y.H.
        • Lee J.D.
        • Kang D.R.
        • Hong J.
        • Lee J.M.
        Bioelectrical impedance analysis values as markers to predict severity in critically ill patients.
        J Crit Care. 2017; 40 (Epub 20220915) (PubMed PMID: 36145173; PMCID: PMC9502764): 103-107https://doi.org/10.1016/j.jcrc.2017.03.013
        • Fang W.H.
        • Yang J.R.
        • Lin C.Y.
        • Hsiao P.J.
        • Tu M.Y.
        • Chen C.F.
        • Tsai D.J.
        • Su W.
        • Huang G.S.
        • Chang H.
        • Su S.L.
        Accuracy augmentation of body composition measurement by bioelectrical impedance analyzer in elderly population.
        Medicine (Baltimore). 2020; 99 (Epub 20210327) (PubMed PMID: 34786008; PMCID: PMC8563932)e19103https://doi.org/10.1097/MD.0000000000019103
        • da Silva T.K.
        • Berbigier M.C.
        • Rubin Bd.A.
        • Moraes R.B.
        • Corrêa Souza G.
        • Schweigert Perry I.D.
        Phase angle as a prognostic marker in patients with critical illness.
        Nutr Clin Pract. 2015; 30: 261-265
        • Oshima T.
        • Delsoglio M.
        • Dupertuis Y.M.
        • Singer P.
        • De Waele E.
        • Veraar C.
        • Heidegger C.P.
        • Wernermann J.
        • Wischmeyer P.E.
        • Berger M.M.
        • Pichard C.
        The clinical evaluation of the new indirect calorimeter developed by the ICALIC project.
        Clin Nutr (Edinburgh, Scotland). 2020; 39 (Epub 2020/02/13) (PubMed PMID: 32046881): 3105-3111https://doi.org/10.1016/j.clnu.2020.01.017
        • Abumrad N.N.
        • Rabin D.
        • Diamond M.P.
        • Lacy W.W.
        Use of a heated superficial hand vein as an alternative site for the measurement of amino acid concentrations and for the study of glucose and alanine kinetics in man.
        Metabolism. 1981; 30 (Epub 1981/09/01) (PubMed PMID: 7022111): 936-940https://doi.org/10.1016/0026-0495(81)90074-3
        • Cobelli C.
        • Foster D.
        • Toffolo G.
        Tracer kinetics in biomedical research.
        Springer Science & Business Media, 2002
        • Ten Have G.A.M.
        • Engelen M.
        • Wolfe R.R.
        • Deutz N.E.P.
        Phenylalanine isotope pulse method to measure effect of sepsis on protein breakdown and membrane transport in the pig.
        Am J Physiol Endocrinol Metab. 2017; 312 (Epub 20170314) (PubMed PMID: 28292760; PMCID: PMC5494580): E519-E529https://doi.org/10.1152/ajpendo.00351.2016
        • Mason A.
        • Engelen M.
        • Ivanov I.
        • Toffolo G.M.
        • NEP Deutz
        A four-compartment compartmental model to assess net whole body protein breakdown using a pulse of phenylalanine and tyrosine stable isotopes in humans.
        Am J Physiol Endocrinol Metab. 2017; 313 (Epub 20170307) (PubMed PMID: 28270442; PMCID: PMC6109702): E63-E74https://doi.org/10.1152/ajpendo.00362.2016
        • Hall J.E.
        • Hall M.E.
        Guyton and hall textbook of medical physiology.
        12 ed. Elsevier Health Sciences, 2011
        • Cruthirds C.L.
        • NEP Deutz
        • Harrykissoon R.
        • Zachria A.J.
        • Engelen M.
        A low postabsorptive whole body protein balance is associated with markers of poor daily physical functioning in Chronic Obstructive Pulmonary Disease.
        Clin Nutrition (Edinburgh, Scotland). 2022; 41 (Epub 20220915) (PubMed PMID: 36145173; PMCID: PMC9502764): 885-893https://doi.org/10.1016/j.clnu.2022.02.018
        • Ho J.
        • Yu J.
        • Wong S.H.
        • Zhang L.
        • Liu X.
        • Wong W.T.
        • Leung C.C.
        • Choi G.
        • Wang M.H.
        • Gin T.
        • Chan M.T.
        • Wu W.K.
        Autophagy in sepsis: Degradation into exhaustion?.
        Autophagy. 2016; 12 (Epub 20160512) (PubMed PMID: 27172163; PMCID: PMC4990998): 1073-1082https://doi.org/10.1080/15548627.2016.1179410
        • Gunst J.
        Recovery from critical illness-induced organ failure: the role of autophagy.
        Crit Care. 2017; 21 (PubMed PMID: 28784175; PMCID: PMC5547478): 209https://doi.org/10.1186/s13054-017-1786-y
        • Van Dyck L.
        • Casaer M.P.
        • Gunst J.
        Autophagy and its implications against early full nutrition support in critical illness.
        Nutr Clin Pract. 2018; 33 (Epub 20180417) (PubMed PMID: 29665131): 339-347https://doi.org/10.1002/ncp.10084
        • Deutz N.E.
        The 2007 ESPEN Sir David Cuthbertson lecture: amino acids between and within organs. The glutamate-glutamine-citrulline-arginine pathway.
        Clin Nutrition (Edinburgh, Scotland). 2008; 27 (Epub 20080523) (PubMed PMID: 18501998): 321-327https://doi.org/10.1016/j.clnu.2008.03.010
        • Stipanuk M.H.
        Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide.
        J Nutr. 2020; 150 (Epub 2020/10/02) (PubMed PMID: 33000151): 2494S-2505Shttps://doi.org/10.1093/jn/nxaa094
        • Kaneko H.
        • Kobayashi M.
        • Mizunoe Y.
        • Yoshida M.
        • Yasukawa H.
        • Hoshino S.
        • Itagawa R.
        • Furuichi T.
        • Okita N.
        • Sudo Y.
        • Imae M.
        • Higami Y.
        Taurine is an amino acid with the ability to activate autophagy in adipocytes.
        Amino Acids. 2018; 50 (Epub 20180309) (PubMed PMID: 29523960): 527-535https://doi.org/10.1007/s00726-018-2550-6
        • Deutz L.
        • Wierzchowska-Mcnew R.
        • Engelen M.
        • Deutz N.
        Plasma glycine concentration but not whole body production production rate is a marker of abdominal obesity in older adults independent of the presence of a chronic disease.
        Curr Dev Nutr. 2022; 6: 1057https://doi.org/10.1093/cdn/nzac070.016